

Why Most Unit Testing is Waste 1

Why Most Unit Testing is Waste

By James O Coplien

1.1 Into Modern Times
Unit testing was a staple of the FORTRAN days, when a
function was a function and was sometimes worthy of functional
testing. Computers computed, and functions and procedures
represented units of computation. In those days the dominant
design process composed complex external functionality from
smaller chunks, which in turn orchestrated yet smaller chunks,
and so on down to the level of well-understood primitives. Each
layer supported the layers above it. You actually stood a good
chance that you could trace the functionality of the things at the
bottom, called functions and procedures, to the requirements
that gave rise to them out at the human interface. There was
hope that a good designer could understand a given function’s
business purpose. And it was possible, at least in well-structured
code, to reason about the calling tree. You could mentally
simulate code execution in a code review.

Object orientation slowly took the world by storm, and it turned
the design world upside-down. First, the design units changed
from things-that-computed to small heterogeneous composites
called objects that combine several programming artefacts,
including functions and data, together inside one wrapper. The
object paradigm used classes to wrap several functions together
with the specifications of the data global to those functions. The
class became a cookie cutter from which objects were created at
run time. In a given computing context, the exact function to be
called is determined at run-time and cannot be deduced from the
source code as it could in FORTRAN. That made it impossible
to reason about run-time behaviour of code by inspection alone.
You had to run the program to get the faintest idea of what was

going on.

So, testing became in again. And it was unit testing with a
vengeance. The object community had discovered the value of
early feedback, propelled by the increasing speed of machines
and by the rise in the number of personal computers. Design
became much more data-focused because objects were shaped
more by their data structure than by any properties of their
methods. The lack of any explicit calling structure made it
difficult to place any single function execution in the context of
its execution. What little chance there might have been to do so
was taken away by polymorphism. So integration testing was
out; unit testing was in. System testing was still somewhere
there in the background but seemed either to become someone
else’s problem or, more dangerously, was run by the same
people who wrote the code as kind of a grown-up version of unit
testing.

Classes became the units of analysis and, to some degree, of
design. CRC cards (popularly representing Classes,
Responsibilities, and Collaborators) were a popular design
technique where each class was represented by a person. Object
orientation became synonymous with anthropomorphic design.
Classes additionally became the units of administration, design
focus and programming, and their anthropomorphic nature gave
the master of each class a yearning to test it. And because few
class methods came with the same contextualization that a
FORTRAN function did, programmers had to provide context
before exercising a method (remember that we don’t test classes
and we don’t even test objects — the unit of functional test is a
method). Unit tests provided the drivers to take methods through
their paces. Mocks provided the context of the environmental
state and of the other methods on which the method under test
depended. And test environments came with facilities to poise
each object in the right state in preparation for the test.

Why Most Unit Testing is Waste 2

1.2 The Cure is Worse than the Disease
Unit testing is of course not just an issue in object-oriented
programming, but the combination of object-orientation, agile
software development, and a rise in tools and computing power
has made it de rigueur. As a consultant I often get questions
about unit testing, including this real one from a recent client of
mine, Richard Jacobs at Sogeti (Sogeti Nederland B.V.):

My second question is about unit tests. If I remember correctly you
said that unit tests are waste. First, I was surprised by that. Today
however, my team told me the tests are more complex than the
actual code. (This team is not the original team that wrote the
code and unit tests. Therefore some unit tests take them by
surprise. This current team is more senior and disciplined.) In my
opinion, now that’s waste... When I was programming on a daily
basis, I did make code for testability purposes but I hardly wrote
any unit tests. However I was renowned for my code quality and
my nearly bug free software. I like to investigate WHY did this work
for me?

You’ll remember from your trade school education that you can
model any program as a Turing tape, and what the program can
do is somehow related to the number of bits on that tape at the
start of execution. If you want to thoroughly test that program,
you need a test with at least the same amount of information:
i.e., another Turing tape of at least the same number of bits.

In real practice, the vagaries of programming language make it
difficult to achieve this kind of compactness of expression in a
test so to do complete testing, the number of lines of code in
unit tests would have to be orders of magnitude larger than those
in the unit under test. Few developers admit that they do only
random or partial testing and many will tell you that they do
complete testing for some assumed vision of complete. Such
visions include notions such as: "Every line of code has been
reached," which, from the perspective of theory of computation,
is pure nonsense in terms of knowing whether the code does
what it should. We’ll discuss that problem in more detail below.
But most programmers think of unit testing this way, which

Why Most Unit Testing is Waste 3

means that it's doomed to fail from the start.

☞ Be humble about what your unit tests can achieve,
unless you have an extrinsic requirements oracle for the
unit under test. Unit tests are unlikely to test more than one
trillionth of the functionality of any given method in a
reasonable testing cycle. Get over it.

(Trillion is not used rhetorically here, but is based on the
different possible states given that the average object size is four
words, and the conservative estimate that you are using 16-bit
words).

1.3 Tests for their Own Sake and Designed Tests
I had a client in northern Europe where the developers were
required to have 40% code coverage for Level 1 Software
Maturity, 60% for Level 2 and 80% for Level 3, while some
where aspiring to 100% code coverage. No problem! You’d
think that a reasonably complex procedure with branches and
loops would have provided a challenge, but it’s just a matter of
divide et impera. Large functions for which 80% coverage was
impossible were broken down into many small functions for
which 80% coverage was trivial. This raised the overall
corporate measure of maturity of its teams in one year, because
you will certainly get what you reward. Of course, this also
meant that functions no longer encapsulated algorithms. It was
no longer possible to reason about the execution context of a
line of code in terms of the lines that precede and follow it in
execution, since those lines of code are no longer adjacent to the
one you are concerned about. That sequence transition now took
place across a polymorphic function call — a hyper-galactic
GOTO. But if all you’re concerned about is branch coverage, it
doesn’t matter.

☞ If you find your testers splitting up functions to support
the testing process, you’re destroying your system

Why Most Unit Testing is Waste 4

architecture and code comprehension along with it. Test at
a coarser level of granularity.

And that's just code mass. You can get the application code
mass down, but that code contains loops that "cheat"
information theory by wrapping up many lines of code in a
small space. That means that tests have to be at least as
computationally complex as code. You not only have many tests
but very long-running tests. To test any reasonable combination
of loop indices in a simple function can take centuries.

Consider the computational complexity of this problem for a
second. I define 100% coverage as having examined all possible
combinations of all possible paths through all methods of a
class, having reproduced every possible configuration of data
bits accessible to those methods, at every machine language
instruction along the paths of execution. Anything else is a
heuristic about which absolutely no formal claim of correctness
can be made. The number of possible execution paths through a
function is moderate: let’s say 10. The cross product of those
paths with the possible state configurations of all global data
(including instance data which, from a method scope, are
global) and formal parameters is indeed very large. And the
cross product of that number with the possible sequencing of
methods within a class is countably infinite. If you plug in some
typical numbers you’ll quickly conclude that you’re lucky if you
get better coverage than 1 in 1012.

One brute-force attack on this problem is to run tests
continuously. People confuse automated tests with unit tests: so
much so that when I criticise unit testing, people rebuke me for
critising automation.

☞ If you write a test to cover as many possibilities as
possible you can dedicate a rack of machines to running the
tests 24 hours a day, 7 days a week, tracking the most
recent check-in.

Why Most Unit Testing is Waste 5

Remember, though, that automated crap is still crap. And those
of you who have a coroporate Lean program might note that the
foundations of the Toyota Production System, which were the
foundations of Scrum, were very much against the automation
of intellectual tasks
(http://www.computer.org/portal/web/buildyourcareer/Agile-
Careers/-/blogs/autonomation). It’s more powerful to keep the
human being in the loop, as is more obvious in exploratory
testing. If you’re going to automate, automate something of
value. And you should automate the mundane stuff. You’ll
probably get better return on your investment by automating
integration tests, bug regression tests, and system tests than by
automating unit tests.

A smarter approach would reduce the test code mass through
formal test design: that is, to do formal boundary-condition
checking, more white-box testing, and so forth. That requires
that the unit under test be designed for testability. This is how
hardware engineers do it: designers provide "test points" that
can read out values on a J-Tag pin of a chip, to access internal
signal values of the chip — tantamount to accessing values
between intermediate computations in a computational unit. I
advocate doing this at the system level where the testing focus
should lie; I have never seen anyone achieve this at the unit
level. Without such hooks you are limited to black-box unit
testing.

I might believe in formalized unit test design if the behavior can
be formalized — that is, if there is some absolute, formal oracle
of correctness from which the test can be derived. More on that
below. Otherwise, it is just the programmer's guess.

☞ Tests should be designed with great care. Business
people, rather than programmers, should design most
functional tests. Unit tests should be limited to those that
can be held up against some “third-party” success criteria.

Why Most Unit Testing is Waste 6

1.4 The Belief that Tests are Smarter than Code
Telegraphs Latent Fear or a Bad Process

Programmers have a tacit belief that they can think more clearly
(or guess better) when writing tests when writing code, or that
somehow there is more information in a test than in code. That
is just formal nonsense. The psychological perspective is
instructive here, and it’s important because that — rather than
any computational property — most drives developer behaviour.

If your coders have more lines of unit tests than of code, it
probably means one of several things. They may be paranoid
about correctness; paranoia drives out the clear thinking and
innovation that bode for high quality. They may be lacking in
analytical mental tools or in a discipline of thinking, and they
want the machine to do their thinking for them. Machines are
good at repeating mechanical tasks but test design still requires
careful thought. Or it may be that your process makes it
impossible to integrate frequently, because of bad process
design or bad tools. The programmers are doing their best to
compensate by creating tests in an environment where they have
some control over their own destiny.

☞ If you have a large unit test mass, evaluate the feedback
loops in your development process. Integrate code more
frequently; reduce the build and integration times; cut the
unit tests and go more for integration testing.

Or the problem may be at the other end: developers don’t have
adequately refined design skills, or the process doesn't
encourage architectural thinking and conscientious design.
Maybe the requirements are so bad that developers wouldn’t
know what to test if they had to, so they make their best guess.
Software engineering research has shown that the most cost-
effective places to remove bugs are during the transition from
analysis to design, in design itself, and in the disciplines of
coding. It's much easier to avoid putting bugs in than to take
them out.

Why Most Unit Testing is Waste 7

☞ If you have comprehensive unit tests but still have a
high failure rate in system tests or low quality in the field,
don’t automatically blame the tests (either unit tests or
system tests). Carefully investigate your requirements and
design regimen and its tie to integration tests and system
tests.

But let’s be clear that there will always be bugs. Testing will not
go away.

1.5 Low-Risk Tests Have Low (even potentially
negative) Payoff
I told my client that I could guess that many of their tests might
be tautological. Maybe all a function does is sets X to 5, and I'll
bet there's a test of that function to see if the value of X is 5 after
it runs. Good testing, again, is based on careful thought and on
basic principles of risk management. Risk management is based
on statistics and information theory; if the testers (or at least the
test manager) don't have at least rudimentary skills in this area,
then you are likely to do a lot of useless tests.

Let's dissect a trivial example. The purpose of testing is to create
information about your program. (Testing does not increase
quality; programming and design do. Testing just provides the
insights that the team lacked to do a correct design and
implementation.) Most programmers want to "hear" the
"information" that their program component works. So when
they wrote their first function for this project three years ago
they wrote a unit test for it. The test has never failed. The
question is: How much information is in that test? That is, if "1"
is the passing of a test and "0" is the failing of a test, how much
information is in this string of test results:

 11111111111111111111111111111111

There are several possible answers depending on which

Why Most Unit Testing is Waste 8

formalism you apply, but most of the answers are wrong. The
naive answer is 32, but that is the bits of data, not of
information. You could be an information theorist and say that
the number of bits of information in a homogeneous binary
string is the binary log of the length of the string, which in this
case is 5. But that isn’t what I want to know: in the end I want to
know how much information I get from a single run of this test.
Information is based on probability. If the probability of the test
passing is 100%, then there is no information — by definition,
from information theory. There is almost no information in any
of the 1s in the above string. (If the string were infinitely long
then there would be exactly zero bits of information in each test
run.)

Now, how many bits of information in this string of test runs?

 1011011000110101101000110101101

The answer is... a lot more. Probably 32. That means that there’s
a lot more information in each test run. If we can’t predict at the
outset whether a test will pass or fail then each test run contains
a full bit of information, and you can’t get better than that. You
see, developers love to keep around tests that pass because it's
good for their ego and their comfort level. But the information
comes from failed tests. (Of course, we can take the other
extreme:

 00000000000000000000000000000000

where there really is no information, either, at least about the
process of quality improvement.)

☞ If you want to reduce your test mass, the number one
thing you should do is look at the tests that have never
failed in a year and consider throwing them away. They are
producing no information for you — or at least very little
information. The value of the information they produce may

Why Most Unit Testing is Waste 9

not be worth the expense of maintaining and running the
tests. This is the first set of tests to throw away — whether
they are unit tests, integration tests, or system tests.

Another client of mine also had too many unit tests. I pointed
out to them that this would decrease their velocity, because
every change to a function should require a coordinated change
to the test. They informed me that they had written their tests in
such a way that they didn't have to change the tests when the
functionality changed. That of course means that the tests
weren't testing the functionality, so whatever they were testing
was of little value.

Don’t underestimate the intelligence of your people, but don’t
underestimate the collective stupidity of many people working
together in a complex domain. You probably think you would
never do what the team above did, but I am always finding more
and more things like this that almost defy belief. It’s likely that
you have some of these skeletons in you closet. Hunt them out,
have a good laugh at yourself, fix them, and move on.

☞ If you have tests like this, that's the second set of tests to
throw away.

The third tests to throw away the tautological ones. I see more
of these than you can imagine — particularly in shops following
what they call test-driven development. (Testing for this being
non-null on entry to a method is, by the way, not a tautological
test — and can be very informative. However, as with most unit
tests, it’s better to make this an assertion than to pepper your test
framework with such checks. More on that below.)

In most businesses, the only tests that have business value are
those that are derived from business requirements. Most unit
tests are derived from programmers' fantasies about how the
function should work: their hopes, stereotypes, or sometimes
wishes about how things should go. Those have no provable

Why Most Unit Testing is Waste 10

value. There were methodologies in the 1970s and 1980s based
on traceability that tried to reduce system requirements all the
way down to the unit level. In general, that's an NP-hard
problem (unless you are doing pure procedural decomposition)
so I'm very skeptical of anyone who says they can do that. So
one question to ask about every test is: If this test fails, what
business requirement is compromised? Most of the time, the
answer is, "I don't know." If you don't know the value of the test,
then the test theoretically could have zero business value. The
test does have a cost: maintenance, computing time,
administration, and so forth. That means the test could have net
negative value. That is the fourth category of tests to remove.
These are tests which, though they may even do some amount of
verification, do no validation.

☞ If you cannot tell how a unit test failure contributes to
product risk, you should evaluate whether to throw the test
away. There are better techniques to attack quality lapses in
the absence of formal correctness criteria, such as
exploratory testing and Monte Carlo techniques. (Those are
great and I view them as being in a category separate from
what I am addressing here.) Don’t use unit tests for such
validation.

Note that there are some units and some tests for which there is
a clear answer to the business value question. One such set of
tests is regression tests; however, those rarely are written at the
unit level but rather at the system level. We know what bug will
come back if a regression test fails — by construction. Also,
some systems have key algorithms — like network routing
algorithms — that are testable against a single API. There is a
formal oracle for deriving the tests for such APIs, as I said
above. So those unit tests have value.

☞ Consider whether the bulk of your unit tests should be
those that test key algorithms for which there is a “third-
party” oracle for success, rather than one created by the

Why Most Unit Testing is Waste 11

same team that writes the code. “Success” here should
reflect a business mandate rather than, say, the opinion of a
team member called “tester” whose opinion is valued only
because it is independent. Of course, an independent
evaluation perspective is also important.

1.6 Complex Things are Complicated
There is a dilemma here, and that is that in some software, most
of the interesting quality data are in the tails of the test result
distributions, and conventional approaches to statistics tell you
the wrong things. So a test may pass 99.99% of the time but the
one test in ten thousand that fails kills you. Again, borrowing
from the hardware world, you can design for a given probability
of failure or you can do worst-case analysis (WCA) to reduce
the probability of failure to arbitrarily low levels. Hardware
people typically use WCA during asynchronous system design
to guard against “glitches” in signal arrivals that wander outside
the design parameters one in every 100 million times. In
hardware, such a module would be said to have a FIT rate of 10
— ten Failures In a Trillion.

The client that I mentioned near the start of this article was
puzzled about why tests weren’t working in his team, because
they had worked for him in an earlier job. I sent him an earlier
version of this paper and he replied,

It is a pleasure to read it while it makes clear why things did work
for me (and the rest of the team). As you might know, I am an
avionics engineer whose career started as an embedded
software developer with one foot in the hardware development.
That is how I started testing my software, with a hardware
mindset. (It was a four men team: 3 electrical engineers from Delft
University (incl. me specialized in avionics) and one software
engineer (The Hague University). We were highly disciplined while
we were working on security systems for banks, penitentiaries, fire
houses, police stations, emergency services, chemical plants, etc.
It had to be right the first time all the time.)

Why Most Unit Testing is Waste 12

Given reasonable assumptions, you can do WCA in hardware
largely because cause-and-effect relationships are easily
traceable: we can look at the wiring to see what causes a
memory element to change state. The states in a Von Neumann
machine change as a side effect of function execution and it is in
general impossible to trace the cause of a given state change, or
even if a given state is reachable. Object-orientation makes it
worse. It is impossible to know, for a given use of some state
value within a program, what instruction last modified that state.

Most programmers believe that source line coverage, or at least
branch coverage, is enough. No. From the perspective of
computing theory, worst-case coverage means investigating
every possible combination of machine language sequences,
ensuring that each instruction is reached, and proving that you
have reproduced every possible configuration of bits of data in
the program at every value of the program counter. (It is
insufficient to reproduce the state space for just the module or
class containing the function or method under test: generally,
any change anywhere can show up anywhere else in a program
and requires that the entire program can be retested. For a
formal proof, see the paper: Perry and Kaiser, “Adequate
Testing and Object–oriented Programming,” Journal of Object-
Oriented-Programming 2(5), Jan. 1990, p. 13). For a smallish
program we are already into a test inventory way beyond the
number of molecules in the universe. (My definition of code
coverage is the percent of all possible pairs, {Program Counter,
System State} that your test suite reproduces; anything else is a
heuristic, and you’ll probably be hard-pressed to find any
rationale for it.) Most undergraduate CS graduates will
recognize the Halting Problem in most variants of this exercise
and know that it is impossible.

1.7 Less is More, or: You are Not Schizophrenic
There’s another gotcha here, specifically with respect to the
initial question from my client. The naïve tester will try to tease
data from the tails by keeping all the tests around or even by

Why Most Unit Testing is Waste 13

adding more tests; that leads exactly to the situation my client
found himself in, with more complexity (or code mass or
choose-your-favourite-measure) in the tests than in the code.
The classes he was testing are code. The tests are code.
Developers write code. When developers write code they insert
about three system-affecting bugs per thousand lines of code. If
we randomly seed my client’s code base — which includes the
tests — with such bugs, we find that the tests will hold the code
to an incorrect result more often than a genuine bug will cause
the code to fail!

Some people tell me that this doesn’t apply to them since they
take more care in writing tests than in writing the original code.
First, that’s just poppycock. (The ones that really make me
laugh are the ones who tell me they are able to forget the
assumptions they made while coding and bring a fresh,
independent set to their testing effort. Both of them have to be
schizophrenic to do that.) Watch what your developers do when
running a test suite: they’re doing, not thinking (like most of the
Agile Manifesto, by the way). There was a project at my first
job in Denmark heavily based on XP and unit testing. I
faithfully tried to bring up the software build on my own
machine and, after many struggles with Maven and other tools
finally succeeded in getting a clean build. I was devastated when
I found that the unit tests didn’t pass. I went to my colleagues
and they said, “Oh, you have to invoke Maven with this flag that
turns off those tests — they are tests that no longer work
because of changes in the code, and you need to turn them off.”

If you have 200 tests — or 2000, or 10,000 — you’re not going
to take time to carefully investigate and (ahem) re-factor each
one every time it fails. The most common practice — which I
saw at a startup where I used to work back in 2005 — is to just
overwrite the old test golds (the expected output or
computational results on completion of a given test) with the
new results. Psychologically, the green bar is the reward.
Today’s fast machines give the illusion of being able to supplant

Why Most Unit Testing is Waste 14

the programmer’s thinking; their speed means I don’t take the
time to think. In any case, if a client reports a fault, and I
hypothesize where the actual bug lies and I change it so the
system behavior is now right, I can easily be led to believe that
the function where I made the fix is now right. I accordingly
overwrite the gold for that function. But that’s just bad science
and is rooted in the witchcraft that correlation is causality. It’s
necessary to re-run all the regressions and system tests as well.

Second, even if it were true that the tests were higher quality
than the code because of a better process or increased
attentiveness, I would advise the team to improve their process
so they take the smart pills when they write their code instead of
when they write their tests.

1.8 You Pay for Tests in Maintenance — and Quality!
The point is that code is part of your system architecture. Tests
are modules. That one doesn’t deliver the tests doesn’t relieve
one of the design and maintenance liabilities that come with
more modules. One technique commonly confused with unit
testing, and which uses unit tests as a technique, is Test-Driven
Development. People believe that it improves coupling and
cohesion metrics but the empirical evidence indicates otherwise
(one of several papers that debunk this notion with an empirical
basis is Janzen and Saledian, “Does Test-Driven Development
Really Improve Software Design Quality?” IEEE Software
25(2), March/April 2008, pp. 77 - 84.) To make things worse,
you’ve introduced coupling — coordinated change — between
each module and the tests that go along with it. You need to
thing of tests as system modules as well. That you remove them
before you ship doesn’t change their maintenance behavior.
(And removing them before shipping may even be a bad idea —
but more on that later.)

When I look at most unit tests — especially those written with
JUnit — they are assertions in disguise. When I write a great
piece of software I sprinkle it with assertions that describe

Why Most Unit Testing is Waste 15

promises that I expect the callers of my functions to live up to,
as well as promises that function makes to its clients. Those
assertions evolve in the same artefact as the rest of my code.
Most environments have provisions to administratively neuter
those assertions when you ship.

An even more professional approach is to leave the assertions in
the code when you ship, and to automatically file a bug report
on behalf of the end user and perhaps to try to re-start the
application every time an assertion fails. At that same startup I
mentioned above I had a boss who insisted that we not do this. I
pointed out to him that an assertion failure meant that something
in the program was very wrong and that it was likely that the
program would produce the wrong result. Even the tiniest error
in the kind of software we were building could cost a client $5
million in rework. He said it was more important that the
company avoid the appearance of having done something wrong
than that we stop before producing an incorrect result. I left the
company. Maybe you are one of his clients today.

☞ Turn unit tests into assertions. Use them to feed your
fault-tolerance architecture on high-availability systems.
This solves the problem of maintaining a lot of extra
software modules that assess execution and check for
correct behavior; that’s one half of a unit test. The other
half is the driver that executes the code: count on your
stress tests, integration tests, and system tests to do that.

Almost last, there are some unit tests that just reproduce system
tests, integration tests, or other tests. In the early days of
computing when computers were slow, unit tests gave the
developer more immediate feedback about whether a change
broke the code instead of waiting for system tests to run. Today,
with cheaper and more powerful computers, that argument is
less persuasive. Every time I make a change to my Scrum
Knowsy® app, I test at the system level. Developers should be
integrating continuously and doing system testing continuously

Why Most Unit Testing is Waste 16

rather than focusing on their unit tests and postponing
integration, even by an hour. So get rid of unit tests that
duplicate what system tests already do. If the system testing
level is too expensive, then create subunit integration tests. Rex
feels that “the next great leap in testing is to design unit tests,
integration tests, and system tests such that inadvertent gaps and
overlap are removed.”

☞ Check your test inventory for replication; you can fund
this under your Lean program. Create system tests with
good feature coverage (not code coverage) — remembering
that proper response to bad inputs or other unanticipated
conditions is part of your feature set.

Last: I once heard an excuse from someone that they needed a
unit test because it was impossible to exercise that code unit
from any external testing interface. If your testing interfaces are
well-designed and can reproduce the kinds of system behaviours
you see in the real world, and you find code like this that is
unreachable from your system testing methodology, then....
delete the code! Seriously, reasoning about your code in light of
system tests can be a great way to find dead code. That's even
more valuable than finding unneeded tests.

1.9 “It’s the process, stupid,” or: Green Bar Fever
Perhaps the most serious problem with unit tests is their focus
on fixing bugs rather than of system-level improvement. Too
often I have seen coders, heads down, trying to get the test to
pass and the Green Bar To Come Up. The tester forms a
hypothesis and, in his or her isolated environment, can't easily
get enough information to validate or refute it. So he or she just
starts trying things to see if they move you closer to the green
bar — or get you all the way there.

There are two potential goals in testing. One is to use it as a
learning tool: to learn more about the program and how it
works. The other is as an oracle. The failure mode happens

Why Most Unit Testing is Waste 17

when people fall into the latter mode: the test is the oracle and
the goal is correct execution. They lose sight of the fact that the
goal is large insight, and that the insight will provide the key to
fixing the bug.

This is why it works to walk away from the terminal for a while.
You become decoupled from the Pavlovian expectation of the
Green Bar coming up and you can start integrating the bits of
insights gleaned from the tests. If you get enough of them, you
get the wispy skeleton of the big picture. If it's enough of a
skeleton the bug will become obvious.

System tests drop you almost immediately into this position of
reflection. You still need the detailed information, of course, and
that’s where debugging comes in. Debugging is the use of tools
and devices to help isolate a bug. Debugging is not testing. It is
ad-hoc and done on a bug-by-bug basis. Unit tests can be a
useful debugging tool. In my own experience I have found that a
combination of many tools work best, and that the most
effective are data value traps, and access to the global context
including all data values and the occasional stack trace.

1.10 Wrapup
Back to my client from Sogeti. At the outset, I mentioned that
he said:

When I was programming on a daily basis, I did make code for
testability purposes but I hardly did write any unit tests. However I
was renowned for my code quality and my nearly bug free
software. I like to investigate WHY did this work for me?

Maybe Richard is one of those rare people who know how to
think instead of letting the computer do your thinking for him —
be it in system design or low-level design. I tend to find this
more in Eastern European countries, where the lack of widely
available computing equipment forced people to think. There

Why Most Unit Testing is Waste 18

simply weren't enough computers to go around. When I first
visited Serbia back in 2004, the students at FON (the faculty
where one learned computing) could get to a computer to access
the Internet once a week. And the penalty for failure is high: if
your code run doesn't work, you have to wait another week to
try again.

I fortunately was raised in a programming culture like this,
because my code was on punch cards that you delivered to the
operator for queuing up to the machine and then you gathered
your output 24 hours later. That forced you to think — or fail.
Richard from Sogeti had a similar upbringing: They had a week
to prepare their code and just one hour per week to run it. They
had to do it right the first time. By all means, a learning project
should assess the cost impediments and remove another one
every iteration, focusing on ever-increasing value. Still, one of
my favourite cynical quotes is, “I find that weeks of coding and
testing can save me hours of planning.” What worries me most
about the fail-fast culture is much less in the fail than the fast.
My boss Neil Haller told me years ago that debugging isn’t what
you do sitting in front of your program with a debugger; it’s
what you do leaning back in your chair staring at the ceiling, or
discussing the bug with the team. However, many supposedly
agile nerds put processes and JUnit ahead of individuals and
interactions.

The best example was one I heard last year, from a colleague,
Nancy Githinji, who used to run a computing company with her
husband in Kenya; they both now work at Microsoft. The last
time she was back home (last year) she encountered some kids
who live out in the jungle and who are writing software. They
get to come into town once a month to get access to a computer
and try it out. I want to hire those kids!

As an agile guy (and just on principle) it hurts me a little bit to
have to admit that Rex is right now and then ☺, but he put it
very eloquently: “There’s something really sloppy about this

Why Most Unit Testing is Waste 19

‘fail fast’ culture in that it encourages throwing a bunch of pasta
at the wall without thinking much… in part due to an over-
confidence in the level of risk mitigation that unit tests are
achieving.” The fail-fast culture can work well with very high
discipline, supported by healthy skepticism, but it’s rare to find
these attitudes surviving in a dynamic software business.
Sometimes failure requires thinking, and that requires more time
than would be afforded by failing fast. As my wife Gertrud just
reminded me: no one wants a failure to take a long time…

If you hire a professional test manager or testing consultant,
they can help you sort out the issues in the bigger testing
picture: integration testing, system testing, and the tools and
processes suitable to that. It’s important. But don’t forget the
Product Owner perspective in Scrum or the business analyst or
Program Manager: risk management is squarely in the center of
their job, which may be why Jeff Sutherland says that the PO
should conceive (and at best design) the system tests as an input
to, or during, Sprint Planning.

As for the Internet: it’s sad, and frankly scary, that there isn’t
much out there. There’s a lot of advice, but very little of it is
backed either by theory, data, or even a model of why you
should believe a given piece of advice. Good testing begs
skepticism. Be skeptical of yourself: measure, prove, retry. Be
skeptical of me for heaven’s sake. Write me at
jcoplien@gmail.com with your comments and copy Rex at the
address at the front of this newsletter.

In summary:

• Keep regression tests around for up to a year — but most of

those will be system-level tests rather than unit tests.
• Keep unit tests that test key algorithms for which there is a

broad, formal, independent oracle of correctness, and for
which there is ascribable business value.

• Except for the preceding case, if X has business value and you

Why Most Unit Testing is Waste 20

mailto:jcoplien@gmail.com

Why Most Unit Testing is Waste 21

can text X with either a system test or a unit test, use a system
test — context is everything.

• Design a test with more care than you design the code.
• Turn most unit tests into assertions.
• Throw away tests that haven’t failed in a year.
• Testing can’t replace good development: a high test failure

rate suggests you should shorten development intervals,
perhaps radically, and make sure your architecture and design
regimens have teeth

• If you find that individual functions being tested are trivial,
double-check the way you incentivize developers’
performance. Rewarding coverage or other meaningless
metrics can lead to rapid architecture decay.

• Be humble about what tests can achieve. Tests don’t improve
quality: developers do.

	1.1 Into Modern Times
	1.2 The Cure is Worse than the Disease
	1.3 Tests for their Own Sake and Designed Tests
	1.4 The Belief that Tests are Smarter than Code Telegraphs Latent Fear or a Bad Process
	1.5 Low-Risk Tests Have Low (even potentially negative) Payoff
	1.6 Complex Things are Complicated
	1.7 Less is More, or: You are Not Schizophrenic
	1.8 You Pay for Tests in Maintenance — and Quality!
	1.9 “It’s the process, stupid,” or: Green Bar Fever
	1.10 Wrapup

