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We introduce a physical approach to social networks (SNs) in which each actor is characterized
by a yes-no test on a physical system. This allows us to consider SNs beyond those originated by
interactions based on pre-existing properties, as in a classical SN (CSN). As an example of SNs
beyond CSNs, we introduce quantum SNs (QSNs) in which actor i is characterized by a test of
whether or not the system is in a quantum state |ψi〉. We show that QSNs outperform CSNs for
a certain task and some graphs. We identify the simplest of these graphs and show that graphs in
which QSNs outperform CSNs are increasingly frequent as the number of vertices increases. We also
discuss more general SNs and identify the simplest graphs in which QSNs cannot be outperformed.

PACS numbers: 03.67.Hk,02.10.Ox,42.81.Uv,87.18.Sn

INTRODUCTION

Social networks (SNs) are a traditional subject of study
in social sciences [1–3] and may be tackled from many
perspectives, including complexity and dynamics [4–6].
Recently, they have attracted much attention after their
tremendous growth through the internet. A SN is a set of
people, “actors”, with a pattern of interactions between
them. In principle, there is no restriction on the nature
of these interactions. In practice, in actual SNs, these in-
teractions are based on relationships or mutual acquain-
tances (common interests, friendship, kinship,etc). How-
ever, to our knowledge, SNs have never been discussed
on the basis of general interactions which can give rise to
them. This is precisely the aim of this work.

A first observation is that, while a SN is typically de-
scribed by a graph in which vertices represent actors and
edges represent the result of their mutual interactions,
the graph does not capture the nature of the interactions
or explain why actor i is linked or not to other actors.
From this perspective, the graph gives an incomplete de-
scription.

In order to account for this, we will consider the fol-
lowing, more general, scenario. We represent each actor
i by a yes-no test Ti on a physical system S initially pre-
pared in a state ρ and with possible outcomes 1 (yes) or
0 (no). Of course, these tests must satisfy some rules so
that actual SNs naturally fit within them. More impor-
tantly, these rules must allow us to consider SNs beyond
classical SNs (CSNs), defined as those in which the links
between actors are determined by pre-existing properties
of the actors, such as, e.g., their enthusiasm for jazz.

First, let us see how a CSN can be characterized in
terms of yes-no tests Ti. In any CSN, it is always pos-
sible to identify a minimum set of labels such as “jazz”
that describes the presence or absence of a link between
any two actors; each actor’s links are described by the

value “yes” or “no” for each of these labels. An exam-
ple is shown in Fig. 1. The size of that minimum set of
labels coincides with a property of the underlying graph
G, known in graph theory as its intersection number [7],
i(G). For example, for the CSN shown in Fig. 1, the seven
labels which describe the network cannot be reduced to a
smaller number since for the underlying graph i(G) = 7.
Suppose each actor has the complete list of labels with
their corresponding value “yes” or “no” as in Fig. 1. The
input physical system S can be a card, and its state ρ
is what is written on it, that is, the name of one of the
labels. For instance, for the CSN in Fig. 1, the state ρ
may be “jazz”. Then, the outcome of Ti is 1 if actor i has
in its list of labels “yes” for jazz, and 0 if it has “no” for
jazz. The initial state of the card does not change after
the test.

In this characterization of a SN, tests Ti naturally fulfil
the following rules. (i) Two actors i and j are linked if
and only if there exists some state ρ for which the results
of Ti and Tj are both 1, which simply means that i and j
share the pre-existing property described by the label in
ρ. (ii) If a test Ti is repeated on the same state ρ, it will
always give the same result, which simply means that the
actor’s label does not change under the execution of the
test. (iii) For any ρ, the order of the tests is irrelevant,
which reflects the symmetry of the interaction.

Note that, as a consequence of rule (i), if for a given ρ
the outcome of Ti is 1, then a test Tj in any j which is
not linked to i will never give the outcome 1. This means
that, for any ρ and any set I of pairwise non-linked ac-
tors, the sum of the outputs of the tests Ti over all actors
in I is upper bounded by 1. Moreover, this results in a
restriction on the possible states ρ. For instance, in the
previous example, the state “jazz or Oxford” is not al-
lowed. For such a state, the tests Ti and Tj corresponding
to two non-linked actors i and j for which the values of
the labels “jazz” and “Oxford” are, respectively, “jazz:
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FIG. 1: A CSN. Each actor is represented by a vertex of a
graph and each link by an edge. The characteristic of a CSN
is that links can be explained on the basis of pre-existing
properties of the actors such as whether or not they are jazz
enthusiasts, attended Oxford University, practice yoga, like
sushi, will participate in a chess tournament, love the music
of J. S. Bach or run four times a week.

yes; Oxford: no” and “jazz: no; Oxford: yes”, would
give both the outcome 1, in contradiction with rule (i).

Let us consider now more general SNs (GSNs). We de-
note by Pρ(a, b|Ti, Tj) the joint probability of obtaining
outcome a ∈ {0, 1} when performing Ti on the system S
initially prepared in the state ρ, and outcome b ∈ {0, 1}
when performing Tj on S in the state ρi resulting from
the previous test Ti. The tests must obey the follow-
ing rules, which generalize (i)–(iii): (I) Pρ(1, 1|Ti, Tj)
determines the linkage between actors i and j; they
are linked if and only if there exists some ρ such that
Pρ(1, 1|Ti, Tj) > 0. (II) For any ρ, Pρ(a, a|Ti, Ti) =
Pρ(a|Ti), i.e., when Ti is repeatedly performed on S
initially in the state ρ, it always yields the same re-
sult. (III) For any ρ, the order of the tests is irrelevant:
Pρ(a, b|Ti, Tj) = Pρ(b, a|Tj , Ti).

Note that in a CSN the probabilities Pρ(a|Ti) can take
only the values 0 or 1, whereas in a GSN these prob-
abilities can take any values compatible with rules (I)–
(III). Moreover, here we will assume that the state ρ may
change according to the results of the tests Ti.

There is a simple task which highlights the difference
between a GSN and a CSN described by the same graph
G: the average probability T that, for an actor i cho-
sen at random, the test Ti yields the outcome 1. The
interesting point is that T is upper bounded differently
depending on the nature of the interactions defining the
SN. For the CSN, let us suppose that the card is in the
state ρ (e.g., jazz). Then, for an actor i chosen at ran-
dom, T = 1

n

∑n
i=1 Pρ(1|Ti), where n is the number of

actors. The maximum value of T over all possible states
ρ is the maximum number of actors sharing the value

“yes” for a pre-existing property, divided by the number

of actors. This corresponds to ω(G)
n , where ω(G) is the

clique number [7] of G, i.e. the number of vertices in
the largest clique. Given a graph, a clique is a subset of
vertices such that every pair is linked by an edge. The
term “clique” comes from the social sciences, where so-
cial cliques are groups of people all of whom know each
other [8]. In the example of Fig. 1, the value of the clique
number for the graph is ω(G) = 2. As a consequence, for
any CSN represented by that graph, the maximum of T
is ω(G)

n = 1
3 .

However, for a GSN described by a graph G, the maxi-

mum value for T compatible with rules (I)–(III) is α∗(Ḡ)
n ,

where Ḡ denotes the complement of G, which is the
graph Ḡ on the same vertices such that two vertices of
Ḡ are adjacent if and only if they are not adjacent in
G, and α∗(Ḡ) is the so-called fractional packing number
[9] of Ḡ, defined as max

∑
i∈V wi, where the maximum

is taken for all 0 ≤ wi ≤ 1 and for all cliques cj of Ḡ,
under the restriction

∑
i∈cj wi ≤ 1. In the example of

Fig. 1, α∗(Ḡ) = 5
2 . Hence, the maximum of T satisfy-

ing rules (I)–(III) is 5
12 > 1

3 , attainable for instance by
taking Pρ(1|Ti) = 1

3 for i = 1, 3, 5 and Pρ(1|Tj) = 1
2 for

j = 2, 4, 6.

Note that the maximum value of T does not change
when the outcome 1 is not deterministic, as in a CSN,
but occurs with certain probability. In this sense, such
“randomized” SNs do not perform better than CSNs.

The interesting point is that, since there are graphs
for which ω(G) < α∗(Ḡ), then there should exist SNs in
which T goes beyond the maximum value for CSNs.

QUANTUM SOCIAL NETWORKS

We shall introduce now a natural SN for which T may
be larger than the maximum for any CSN represented by
the same graph. A quantum SN (QSN) is defined as a
SN in which each actor i is associated with a quantum
state |ψi〉. The states are chosen to reflect the graph of
the network in the following sense. Non-adjacent (ad-
jacent) vertices in the graph correspond to orthogonal
(non-orthogonal) states. It is always possible to asso-
ciate quantum states to the actors of any network fulfill-
ing the orthogonality relationships imposed by its graph
[10]. Reciprocally, any set of quantum states defines a
QSN.

A QSN can be constructed from a CSN by assigning
to actor i a device to test the quantum state |ψi〉, as
illustrated in Fig. 2. The characterization of the QSN
in terms of yes-no tests Ti satisfying rules (I)–(III) is as
follows. Each device receives a system S in a quantum
state ρ as input, and gives as output either the state
|ψi〉 and the outcome 1, or a state orthogonal to |ψi〉
and the outcome 0. These tests are measurements repre-
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FIG. 2: A QSN can be visualized as a CSN in which each
actor i has a device to measure a quantum state |ψi〉.

sented in quantum mechanics by rank-1 projectors. Note
that projective measurements are the simplest repeatable
measurements in quantum mechanics [in agreement with
rule (II)], whereas general measurements represented by
POVMs are not repeatable.

In a QSN, T may be larger than the maximum for any
CSN represented by the same graph. If each and every
actor is provided with the same input state |Ψ〉, accord-
ing to quantum mechanics the probability of getting the
outcome 1 when performing Ti for a randomly chosen
i is now T = 1

n

∑n
i=1 |〈Ψ|ψi〉|2. Given G, the quan-

tity 1
n max

∑n
i=1 |〈Ψ|ψi〉|2, where the maximum is taken

over all quantum vectors |Ψ〉 and |ψi〉 and all dimensions,
gives the maximum value of T for any QSN. This number

is equal to ϑ(Ḡ)
n , where ϑ(Ḡ) is the Lovász number [11]

of Ḡ, which can be computed to arbitrary precision by
semi-definite programming in polynomial time (see the
Appendix).

The Lovász number was introduced as an upper bound
of the Shannon capacity of a graph [12], and it is sand-
wiched between the clique number ω(G) and the chro-
matic number χ(G) of a graph: ω(G) ≤ ϑ(Ḡ) ≤ χ(G)
[13]. The interesting point is that, for those graphs such
that ϑ(Ḡ) > ω(G), QSNs outperform CSNs.

On the other hand, ϑ(Ḡ) is upper bounded by the frac-
tional packing number α∗(Ḡ), as was shown by Lovász
in [11]. In a nutshell, T and its three upper bounds fulfil

T
CSN

≤ ω(G)
n

QSN

≤ ϑ(Ḡ)
n

GSN

≤ α∗(Ḡ)
n . For example, for the SNs

in Figs. 1 and 2, one has T
CSN

≤ 1
3

QSN

≤
√

5
6

GSN

≤ 5
12 .

These numbers, ω(G) [which is equal to the indepen-
dence number α(Ḡ) of the complement graph], ϑ(Ḡ) and
α∗(Ḡ) have previously appeared in quantum informa-
tion, in the discussion of the quantum channel version
of Shannon’s zero-error capacity problem [14, 15], and in
foundations of quantum mechanics, in the discussion of
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FIG. 3: Graphs for which QSNs can outperform CSNs. The
right side displays the quantum states |ψi〉 and |Ψ〉 needed
for the maximum quantum advantage using a quantum sys-
tem of the smallest dimension. (a) is the simplest graph for
which QSNs can outperform CSNs. (b) and (c) are the sim-
plest graphs for which QSNs cannot be improved. Graph (c)
has the same edges as graph (b) plus extra ones. (d) is the
simplest known graph in which the quantum advantage is in-
dependent of |Ψ〉.

non-contextuality inequalities [16].

We generated all non-isomorphic connected graphs
with less than 11 vertices (more than 11×106 graphs) and
singled out those for which ϑ(Ḡ) > ω(G) (as explained
in the Appendix). The graph with less number of ver-
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tices such that ϑ(Ḡ) > ω(G) is the pentagon, for which
ω(G) = 2 and ϑ(Ḡ) =

√
5, which can be attained using

a quantum system of dimension d = 3 [see Fig. 3 (a)].
The second simplest graph for which ϑ(Ḡ) > ω(G) is the
one in Figs. 1 and 2. For a given number of vertices, the
number of graphs such that the maximum of T for QSNs
is larger than for CSNs rapidly increases. The complete
list of these graphs with less than 11 vertices is provided
in the Appendix.

Interestingly, the probability that the graph of an ar-
bitrary network with a large number of actors contains
induced graphs in which a QSN outperforms a CSN is al-
most identity. This follows from a result in graph theory
according to which an arbitrarily large graph contains
with almost certainty an induced copy of every graph
[17]. A graph H is said to contain an induced copy of G
when G is a subgraph of H obtained by removing some of
the vertices and all the edges incident to these vertices.

Moreover, a stronger result can be proven. The proba-
bility that QSNs outperform CSNs for an arbitrarily large
graph is almost identity. This follows from the observa-
tion [18] that, while for an n-vertex random graph with
edges generated with probability 1/2 the value of ω(G)
is almost surely [19] roughly 2 log2 n, the value of ϑ(G)
is almost surely [20] o(

√
n).

Once one has identified a graph for which ϑ(Ḡ) >
ω(G), one can compute the quantum states |Ψ〉 and |ψi〉
of minimum dimensionality ξ(G) providing the optimal
quantum solution, the one that maximizes T . For the
simplest graph with quantum advantage these states are
in Fig. 3 (a). The state |Ψ〉 is the initial state of S needed
to obtain the maximum quantum advantage.

SOCIAL NETWORKS WITH
NO-BETTER-THAN-QUANTUM ADVANTAGE

Remarkably, there are graphs for which QSNs outper-
form CSNs but no GSN outperforms the best QSN: those
satisfying ω(G) < ϑ(Ḡ) = α∗(Ḡ). To single out such
graphs is particularly interesting because they would al-
low us to construct the best GSN in a simple way.

We identified all the graphs with less than 11 vertices
with ω(G) < ϑ(Ḡ) = α∗(Ḡ). There are only four of them.
The simplest one is in Fig. 3 (b). Its quantum realization
requires a d = 6 quantum system (e.g., a qubit-qutrit sys-
tem) and ω(G) = 2 and ϑ(Ḡ) = 5

2 . The second simplest
graph contains the first one, and it is shown in Fig. 3 (c).
It only requires a d = 4 quantum system; for this graph
ω(G) = 3 and ϑ(Ḡ) = 7

2 . The other two graphs are the
one in Fig. 3 (c) with one or two extra edges, as shown
in the Appendix.

In all the graphs we have explored so far, the quan-
tum advantage requires the preparation of S in a spe-
cific quantum state |Ψ〉. However, as the complexity of
the network increases this requirement becomes unnec-

essary. This is due to the fact that there are graphs for
which the quantum advantage is independent of |Ψ〉; thus
any quantum state (pure or mixed, including maximally
mixed) can be used as initial state for the tests Ti.

As proven in the Appendix, any set of quantum states
|ψi〉 belonging to the class of the so-called Kochen-
Specker sets [21, 22] defines a QSN in which the quan-
tum advantage is independent of the state |Ψ〉. The
graph corresponding to the SN associated to the sim-
plest Kochen-Specker set [23] is illustrated in Fig. 3 (d).
It has ω(G) = 4 and ϑ(Ḡ) = 9

2 , requires a d = 4 quantum
system and no GSN can outperform it. Methods to gen-
erate Kochen-Specker sets [24–27] can be used to obtain
QSNs with all these features.

FINAL REMARKS

Any actual SN through the internet, like Facebook or
Twitter, is complex enough to potentially benefit from
assigning quantum tests to the actors. An example is
the following: suppose that a company wants to sell a
product to as many Facebook users as possible. Under
the (correct) assumption that Facebook is a CSN, the op-
timal strategy would be to identify the biggest subgroup
of mutually linked actors, single out their common inter-
est, and then design a commercial targeting this common
interest. However, if Facebook were a QSN with exactly
the same links as the actual Facebook, then the com-
pany would have a larger positive feedback by linking its
commercial to the results of the quantum tests.

As in a CSN, the vertices of a QSN can be organized in
communities or clusters, with many edges joining vertices
of the same cluster and comparatively few edges joining
vertices of different clusters. Given a graph G, commu-
nity detection might be simpler if the graph represents a
QSN rather than a CSN. The reason is that a QSN with
a given G requires a (quantum) physical system of di-
mension (i.e., number of perfectly distinguishable states)
dQ = ξ(Ḡ), with ξ(Ḡ) the orthogonal rank of the com-
plement of G, defined as the minimum d such that there
exists an orthogonal representation of Ḡ in d dimensions
(i.e. a function mapping non-adjacent vertices in G to
orthogonal vectors in Cd). However, building a CSN re-
quires a physical system of dimension dC = i(G) (e.g.,
for the G in Fig. 1, there are i(G) = 7 distinguishable
states ρ: jazz,. . . , running). dQ ≤ dC and, in most cases,
dQ < dC . As an example, while for the graphs in Fig.
3 (a)–(d), dC is 5, 15, 10 and 18; dQ is 3, 6, 4 and 4, re-
spectively. Once a community is detected, the study of
its induced subgraph will tell us whether or not it has
a quantum advantage. Note that QSNs with no global
quantum advantage can contain induced subgraphs (e.g.,
representing communities) with quantum advantage.

On the experimental side, constructing a simple QSN
with advantage over its classical counterpart is within
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actual experimental capabilities. The simplest example
is a pentagon in which each actor has a device for testing
the appropriate quantum state.
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APPENDIX

We explain how we obtained all graphs G with less
than 11 vertices for which ϑ(Ḡ) > ω(G). We also prove
that a set of quantum states belonging to the class of
Kochen-Specker sets defines a quantum social network
in which the quantum advantage is independent of the
state.

Finding graphs in which QSNs can outperform CSNs

To obtain all SNs with less than 11 actors in which the
assignment of quantum states can outperform the cor-
responding CSNs, we generated all non-isomorphic con-
nected graphs using nauty [28], and then we calculated
ω(G) (using Mathematica [29]), ϑ(Ḡ) (using SeDuMi [30]
and also DSDP [31, 32]) and α∗(Ḡ) (using Mathematica

from the clique-vertex incidence matrix of Ḡ, obtained
from the adjacency matrix of Ḡ calculated using MACE

[33, 34] for enumerating all maximal cliques). In ad-
dition, we obtained the minimum dimensionality ξ(G)
of the quantum system in which the maximum quan-
tum versus classical advantage occurs, or a lower bound
of ξ(G), by identifying subgraphs in Ḡ which are geo-
metrically impossible in a space of lower dimensionality.
For example, the simplest impossible graph in dimension
d = 1 consists of two non-linked (non-orthogonal) ver-
tices in Ḡ; in d = 2, three vertices, one of them linked
to the other two. From these two impossible graphs, one
can recursively construct impossible graphs in any di-
mension d by adding two vertices linked to all vertices of
an impossible graph in d− 2. For example, if Ḡ contains
a square, then ξ(G) > 3. Finally, we have calculated the
minimum dimensionality i(G) needed for a CSN by using
a program based on nauty, very-nauty [35] and [36].

Table I contains the number of non-isomorphic graphs
with a given number of vertices, up to 10 vertices; the
number of them in which QSNs outperform CSNs, and
for the latter, the number of those for which no GSN
outperforms the best QSN. All non-isomorphic graphs
with less than 11 vertices (around 106) in which QSNs
outperform CSNs are presented in [37].

TABLE I: Number of non-isomorphic graphs with vertices
ranging from 5 to 10 corresponding to SNs in which the as-
signment of quantum states to the actors provides advantage,
and number of them in which the advantage cannot be im-
proved by GSNs.

Vertices Graphs
With quantum

advantage

With no-better-
than-quantum

advantage

5 21 1 0

6 112 2 0

7 853 28 0

8 11117 456 0

9 261080 15951 0

10 11716571 957639 4

State-independent QSNs

A Kochen-Specker (KS) [21] set in dimension d is a set
of rays S in the d-dimensional complex space such that
there is no function f : S → {0, 1} satisfying that for all
orthonormal bases b ⊆ S,

∑
u∈b f(u) = 1.

Proposition: For any KS set in dimension d represented
by a graph G, ω(G) < ϑ(Ḡ) for any initial state in di-
mension d.

Proof: For an n-ray KS set in dimension d, ϑ(Ḡ) = n
d ,

since ϑ(Ḡ) is the same for any initial state, including the
maximally mixed state ρ = 1

d11 (where 11 represents the
identity matrix). ω(G) cannot reach this number since,
by definition of KS set in dimension d, there is no way
to assign 0 or 1 to their elements in such a way that, for
every clique of size d in the complement graph Ḡ, which
corresponds to a basis b ⊆ S, d − 1 elements are 0 and
one is 1. This means that the best possible assignment
respecting that two non-adjacent vertices in G cannot be
both 1 includes at least one clique C in Ḡ for which 0 is
assigned to the d elements. The KS set can be expanded
so that every vector belongs to a clique of size d in Ḡ, and
the assignments can be replicated an integer number m
such that mω(G) and mϑ(Ḡ) can be expressed as a sum
of elements grouped in cliques. The contribution of each
clique is either 0 or 1. In mϑ(Ḡ) all cliques’s contribution
is 1, whereas in mω(G) the contribution of the clique C
in which the assignment fails is 0.
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[25] A. Cabello and G. Garćıa-Alcaine, J. Phys. A 29, 1025

(1996).
[26] A. Cabello, J. M. Estebaranz, and G. Garćıa-Alcaine,
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