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Abstract: We establish a ‘map’ for describing a wide class of Limited Dependent Variables models much
used in the econometric literature. The classification system, or language, is an extension of Amemiya’s
typology for tobit models and is intended to facilitate communication among researchers. The class is de-
fined in relation to distributions of latent variables of an arbitrarily high dimension; the region of support
can be divided into an arbitrary number of subsets, and the observation rules in each subset can be any
combination of the observed, censored, and missing status. Consistent labeling is suggested at different
levels of detail.
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1. Introduction

In the time before Amemiya (1984) it may have been less than obvious how a study

like “Application of a threshold regression model to household purchase of automobiles”

(Dagenais, 1975) was related to “Censored regression model with unobserved stochastic

censoring thresholds” (Nelson, 1977). By Amemiya’s account they are closely related and

he labeled both as ‘Type II tobit models’. His classification system for tobit models quickly

became standard in the econometrics literature.

However, Amemiya’s scope were limited in the outset: “My review of the empirical

literature suggests that roughly 95% of the econometric applications of Tobit models fall

into one of ... five types” (p. 4). Although a typology based on previous empirical litera-

ture can be useful for review purposes, it has, from a theoretical perspective, at least two

disadvantages: the empirical literature existing at any time is limited by currently avail-

able computing resources, and, since the number of possible types of Limited Dependent

Variables (LDV) models is infinite, the empirical literature will never cover all cases.

We suggest a classification system which fills these lacunae. We also extend the

model class to allow for both censored and missing variables. Any LDV model within the

class can be described in a compact and consistent manner. We take the discussion up to

the point of demonstrating how likelihood functions can be represented, but refrain from

discussing typical inference issues.

2. Definitions and notation

2.1. Latent variables, subsets, and observation rules. Our general framework has

three basic elements. The first is a vector of latent stochastic variables, η = (η1, . . . , ηN ),

defined over the Euclidian space, RN . The second is a partition of RN into I subsets,

denoted as α=(α1, . . . , αI), so that

(1)
I∪

i=1

αi = RN , αi ∩ αj = ∅ ∀ i ̸= j,

The third is a register of observation rules. In each subset, each variable ηn (n=1, . . . , N),

has one among three possible observational statuses: observable, censored, missing, indi-

cated by o, c, m. The observation rule for subset i, ri, is a ‘word’ with N letters indicating

the observational statuses for all latent variables (confer Hein, 2002, for an introduction

to formal languages). These rules are collected in the tuple r = (r1, . . . , rI). An exam-

ple is one latent variable, censored below a threshold value, θ, and observed above, i.e.,

N = 1, I = 2. Then, for subsets α1 = {η1 ∈ R1; η1 ≤ θ} and α2 = {η1 ∈ R1; η1 > θ}, the
observation rules are r=(c, o). Changing the rule in α1 from c to m, giving r=(m, o), a

model sometimes called a univariate truncated model emerges.

The observation rules for a few standard models are illustrated in the first column of

Table 1. Amemiya’s Type II is a bivariate model (N=2) with two subsets defined by the

value of one of the latent variables. One variable is censored in both subsets, as only the

sign is assumed observed, the other is censored in one subset and observed in the other.

The subsets then become α1={(η1, η2) ∈ R2; η1≤θ} and α2={(η1, η2) ∈ R2; η1>θ} with

observation rules r=(cc, co).

2.2. Coding of observations. Data can be generated in three steps: first, realizations

of the latent variables are drawn; second, each realization is assigned to one subset αi
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with observation rule ri; third, depending on the latter, an observation is recorded, say

in a computer readable file. Let realization t of η be denoted as ηt = (η1t, . . . , ηNt).

Corresponding to ηt we define, conceptually, a vector of observable stochastic variables,

yt=(y1t, . . . , yNt), regardless of the observation status. Then, letting the observation rule

for realization t be denoted Rt, we can define any observation as a pair, (yt, Rt). Examples

are given in Table 2.

Consider first the univariate case: If in subset i the variable is observable, then

y1t = η1t is the obvious definition; if it is censored, a suggested observability convention

may be y1t= i, while if it is missing we let (yt, Rt)=Λ, Λ representing an empty string.

For cases with N > 1 the extension is straightforward, and for missing variables (ri =

m,mm,mmm, . . .) we correspondingly define (yt, Rt)=Λ.

Whereas the number of potential observation rules, i.e., possible selections of the

(o, c,m) triple, is, in general, 3N , it may be convenient to reduce the number of cod-

ing rules actually employed to 2N+1, since when only some latent variables are missing,

we can choose the same coding for missing variables as for censored ones. In for exam-

ple a bivariate model with observational status Rt = om in subset i (η1 observable, η2
missing), we may treat η2 as censored and code observations as Rt = oc, yt = (η1t, i).

In this way, the set of observation rules used in coding can be condensed from Rt ∈
{mm,mc,mo, cm, cc, co, om, oc, oo} to Rt∈{mm, cc, co, oc, oo} . This notation allows us

to present likelihood functions in a compact manner.

3. Likelihood function: Examples

3.1. A univariate sub-class. Let the density function of η1, with parameter vector γ,

be f(η1,γ). Assuming that the subsets are defined as continuous intervals, all bounded

by a pair of thresholds, collected in θi=(θi, θi), we have

(2) αi = {η1 ∈ R : θi ≤ η1 < θi}, i = 1, . . . , I.

The probability that a realization of η1 belongs to subset i is denoted

(3) F(θi,γ) =
∫ θi
θi

f(η1,γ)dη1, i = 1, . . . , I.

Aggregating probabilities over all subsets that have the same observation rule, we have

Fz =
∑

i:ri=z F(θi,γ), z = o, c,m, Fo+Fc+Fm=1.

Suppose we have a set of observations, a sample, T . The likelihood for observation t, t∈T ,

takes different forms depending on the value of Rt:

Lt(yt, Rt) =


f(yt,γ)

Fo + Fc
if Rt = o,

F(θyt ,γ)

Fo + Fc
if Rt = c.

(4)

Let Ti ⊆ T denote the subset of observations that falls in subset i. Then the likelihood for

the full observation set, valid for any univariate model within the class, can be written as

(5) L =
I∏

i=1

∏
t∈Ti

Lt(yt, Rt).

If a covariate vector x is included, so that for instance E(η1|x)=a1x, where a1 is a

coefficient vector, we extend f(·) to f(η1,γ;a1,x)=fϵ(η1−a1x,γ), where fϵ(ϵ1,γ) is the

density of ϵ1=η1−E(η1|x).
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3.2. An N-variate sub-class. Assume that η follows an N -variate distribution with

density f(η,γ), which can be modified to accommodate covariates. Subset i is defined by

(6) αi = {(η1, . . . , ηN ) ∈ RN : θni≤ηn<θni, n = 1, . . . , N};

the vectors of bounds by θni ≡ (θni, θni); and the index set of variables by N ≡ {1, . . . , N}.
Let Ai and its complement A∗

i be any set containing the indices of the variables which,

in subset i, are observed and non-observed (i.e., censored or missing), respectively. Let

correspondingly, η and the set of θni for subset i, be partitioned into

θAi ≡ {θni : n ∈ Ai}, θA∗i ≡ {θni : n ∈ A∗
i },

ηAi ≡ {ηn : n ∈ Ai}, ηA∗i ≡ {ηn : n ∈ A∗
i }.

The number of Ai sets is, for all i, 2N , of which Np ≡
(
N
p

)
contain p observed and N−p

non-observed variables (p= 0, . . . , N). The prototype element in the likelihood function

for any observability status in subset i, characterized by Ai, can then be defined as:

(7) FA∗i(ηAi,θA∗i,γ) ≡
∫
ηA∗i∈θA∗i

f(η,γ)dηA∗i, i = 1, . . . , I.

Here integration goes across the non-observable variables, making the result a function of

their interval bounds. For subsets with all, respectively no, variables observed, we have

in particular: FA∗i(ηAi,θA∗i,γ) equals f(η,γ) for Ai=N and equals
∫
η∈θi

f(η,γ)dη ≡
F(θi,γ) for Ai = ∅, F(θi,γ) being the subset i probability, satisfying

∑N
i=1F(θi,γ)=1.

If no variable is missing in any subset, we can then, letting t index observation and

yAit=ηAit, generalize (4) to

Lt(yt) =


f(yt,γ) if ηt ∈ αi, Ai = N ,

FA∗i(yAit,θA∗i,γ) if ηt ∈ αi, Ai ⊂ N , A∗
i ⊂ N ,

F(θi,γ) if ηt ∈ αi, A∗
i = N .

(8)

Let, in general, FNM (θ,γ), FSM (θ,γ), FAM (θ,γ) denote the subset probabilities aggre-

gated over those subsets where, respectively, no variable, some variables, and all variables

are missing. If FAM (θ,γ) is empty, so that all A∗
i contain at least some censored variables,

we can either modify (8) by rescaling all elements by the factor [FNM (θ,γ)+FSM (θ,γ)]−1

or, if it is desirable to curtail the sample by omitting observation sets with some observa-

tions missing, thus ensuring that all A∗
i included contain censored variables only, rescale

by the factor [FNM (θ,γ)]−1.

Letting t ∈ A(p, r)i symbolize that observation t in subset i belongs to selection r

among those having p observed variables (r=1, . . . , Np), the prototype expression for the

likelihood function, in which (8), or a modification, can be inserted, then becomes

L =
I∏

i=1

N∏
p=0

Np∏
r=1

∏
t∈A(p,r)i

Lt(yt).(9)

4. Label systems for models

Our most detailed label system refers directly to the observation rules. With this system,

three univariate models considered in Maddala (1983, Section 6.8) as examples of ‘friction

models’, can be represented by r = (c, c, c,m), r = (c, c, c), and r = (o, c, o). The second

has a link to both the standard probit, r=(c, c), and the ordered probit, r=(c, . . . , c). So

does the first, but, as explained above, missing η variables give rise to distinctly different
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likelihood functions. Maddala’s grouping of these models undoubtedly makes sense. How-

ever, when describing them in terms of our observation rules, their key differences and

their relationships to models usually not labeled as ‘friction models’ emerge more clearly.

This detailed classification is fully flexible with regard to subsets and dimensions.

Amemiya’s bivariate types, Type II and Type III, can be represented by r=(cc, co) and

r = (cc, oo), respectively. We can also describe the ‘tobit-like model’ r = (oo, co) which

is neither Type II nor Type III, and the model r=(cc, co, oo) which belongs as much to

Type II as to Type III. Similarly we can label Amemiya’s trivariate types, Type IV and

Type V, by r=(cco, ooc) and r=(cco, coc), respectively. We can also describe the related

models r=(ooo, ooc), (ooo, occ), (ooo, ccc), (ooc, ccc), (occ, ccc) which remain unclassified

in Amemiya’s typology, and the model r=(cco, ooc, coc) which belongs as much to Type IV

as to Type V.

A less detailed label system can be obtained by counting the number of subsets for

each observation rule. All univariate models can be labeled in the format o(·)c(·)m(·), the
letters indicating observation rules and the following arguments the number of subsets.

The univariate censored and the univariate truncated can be labeled o(1)c(1)m(0) and

o(1)c(0)m(1), respectively, or by suppressing the non-occurring observation rules, simply

as o(1)c(1) and o(1)m(1). For multivariate models, the description can be simplified

further by ignoring the order of letters and regarding the string of letters as a product so

that cc= c2, oo=o2, or commom= co2m3. This allows us to label Amemiya’s Type V as

oc2(2).

Finally, taking a bird’s-eye view on all the models we have discussed, we suggest the

general notation OCM(N, I), OCM indicating inclusion of observed, censored and missing

variables, and (N, I) the dimension and the number of subsets, as before. If a model

does not involve all three observation rules, omitting letters in OCM may be shorter and

more informative: We can let OCM(1, 2) describe the univariate censored, the univariate

truncated, and the probit, or we can use the respective labels OC(1, 2), OM(1, 2), and

C(1, 2) instead. In this notation, Amemiya’s bivariate and trivariate models emerge as

OC(2, 2) and OC(3, 2), respectively.

The choice of detail may depend on the context. Li (2011) estimates a four-dimensional

model where a selection mechanism concerns two variables, each censored into two cate-

gories, which determine the observation status for two other variables. There are four sub-

sets with distinct observation rules, and we would label it as OC(4, 4), o2c2(1)oc3(2)c4(1),

or r = (oocc, cocc, occc, cccc). His more general selection mechanisms with, say, τ3 and

τ4 categories for the two variables, can be described as OC(4, τ3 · τ4), but here the more

detailed labels seem less practical, at least in verbal communication.

5. Concluding remarks

The taxonomies suggested in this paper apply to a large and frequently used class of

econometric models and define precise relations between ‘observed’, ‘censored’, and ‘miss-

ing’ variables. Albeit it has been recognized for decades that members of this class have

common features, previous descriptions of the class have been implicit and deliberately

incomplete. Being applicable to models of any dimension of the latent variables, contain-

ing any number of subsets, and any combinations of observation rules, our classification

system is complete. It is suitable for both parametric and non-parametric densities of the

latent variables.
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The progress towards a deepened understanding of LDV models still goes on. No-

tably, Schnedler (2005) presents theoretical results applicable ‘to an almost arbitrary cen-

soring problem’. This makes likelihood estimation more accessible to applied econome-

tricians. So does the open source estimation software package offered by Toomet and

Henningsen (2008), who discuss estimation of tobit Types II and V and sketch how the

package can be expanded to include more general models. The communication between

workers in the various branches of the LDV model community may benefit from a com-

mon, shorthand, and precise description of models. We believe our taxonomies can serve

this purpose.

Another use is in teaching: In contemporary textbooks ‘censoring’, ‘selection’, ‘in-

complete observation’, ‘defective data’ and ‘incidental truncation’ are frequently occurring

terms. Although the meaning within a single book usually is sufficiently clear, it may be

less obvious how to generalize these terms to other models. With our classification system

at hand, the whole class of models can be presented through a few simple examples and

straightforward induction.
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Table 1. Classification of some standard models

r Intermediate detail OCM(N, I)

Amemyia’s Type II (cc, co) cc(1)co(1) OC(2, 2)
Amemyia’s Type III (cc, oo) cc(1)oo(1) OC(2, 2)

Amemyia’s Type IV (cco, ooc) oc2(1)o2c(1) OC(3, 2)
Amemyia’s Type V (cco, coc) oc2(2) OC(3, 2)

Table 2. Coding of observations, (yt, Rt), in different subsets. Examples

α1 α2

Univariate Censored (Tobit), r = (o, c) (η1t, o) (2, c)
Univariate Truncated, r = (o,m) (η1t, o) Λ
Amemyia’s Type II, r = (cc, co)

(
(1, 1), cc

) (
(2, η1t), co

)


