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Abstract

Background: The human placenta is a rapidly developing organ that undergoes structural and functional changes
throughout the pregnancy. Our objectives were to investigate the differences in global gene expression profile, the
expression of imprinted genes and the effect of smoking in first and third trimester normal human placentas.

Materials and Methods: Placental samples were collected from 21 women with uncomplicated pregnancies delivered at
term and 16 healthy women undergoing termination of pregnancy at 9–12 weeks gestation. Placental gene expression
profile was evaluated by Human Genome Survey Microarray v.2.0 (Applied Biosystems) and real-time polymerase chain
reaction.

Results: Almost 25% of the genes spotted on the array (n = 7519) were differentially expressed between first and third
trimester placentas. Genes regulating biological processes involved in cell proliferation, cell differentiation and angiogenesis
were up-regulated in the first trimester; whereas cell surface receptor mediated signal transduction, G-protein mediated
signalling, ion transport, neuronal activities and chemosensory perception were up-regulated in the third trimester. Pathway
analysis showed that brain and placenta might share common developmental routes. Principal component analysis based
on the expression of 17 imprinted genes showed a clear separation of first and third trimester placentas, indicating that
epigenetic modifications occur throughout pregnancy. In smokers, a set of genes encoding oxidoreductases were
differentially expressed in both trimesters.

Conclusions: Differences in global gene expression profile between first and third trimester human placenta reflect
temporal changes in placental structure and function. Epigenetic rearrangements in the human placenta seem to occur
across gestation, indicating the importance of environmental influence in the developing feto-placental unit.
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Introduction

Molecular, histological and functional rearrangements of the

placenta are necessary throughout pregnancy in order to ensure

appropriate fetal development and maternal health. The gestation-

related regulation of placental development is probably driven by

genetic, fetal, maternal and environmental factors. However, the

molecular mechanisms behind this process are unknown [1]. As

gestation advances the needs of the fetus change and the placenta

adapts to these changes. Placental weight is related to fetal growth,

with progressive increase of the fetal-placental weight ratio from

1:2.9 at 24 weeks gestation to 1:6.8 at term [2].

The formation of the placenta is characterised by a rapidly

growing, undifferentiated trophoblast that acquires a villous and

an extravillous phenotype. The villous cytotrophoblast enters the

syncytial pathway, while the extravillous trophoblast invades the

maternal decidua. Both lineages differentiate in parallel in order

to establish the feto-maternal circulation. The total surface area

of the villi in the normal human placenta is linearly associated

with placental volume [3]. Morphological studies have demon-

strated a continuous evolution of the different chorionic villous

types during gestation [4]. The decrease in trophoblast

proliferation along with a relative increase in endothelial

proliferation causes a switch from branching to non-branching

angiogenesis in the third trimester. This results in the formation

of long and slender villous trees containing one or two poorly

branched capillary loops, which in turn, cause a decrease in feto-

placental vascular impedance [5]. These morphological changes

in villous tree development are reflected in the hemodynamic

changes observed in the feto-placental circulation. Indeed,

ultrasound assessment of the feto-placental circulation shows a

gradual increase in the fraction of the fetal cardiac output

distributed to the placenta in the second trimester [6] with slight

decrease towards term [7].

Intrauterine environment influences placental development.

There is a switch from histiotrophic nutrition in the first trimester
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to hemotrophic nutrition later in pregnancy [8]. Moreover, in utero

environment seems to play an important role not only for fetal

development, but also for health in adult life, through epigenetic

programming. The placenta is considered to be a major site of

epigenetic regulation from the pre-implantation period to delivery

[9].

The human placenta expresses more than 12000 genes [10],

including most of the currently known imprinted genes. We

hypothesized that molecular rearrangements and phenotypic

adaptations that are necessary for normal placental development

are reflected in its gene expression levels. The aims of this study

were to investigate differences in global gene expression profile,

the expression of imprinted genes in particular and the effect of

smoking in the first and third trimester placenta during normal

human pregnancy.

Results

The phenotype of the study population is shown in Table 1.

There were no differences regarding maternal age, gravidity and

parity among groups, but the percentage of women smoking

tobacco was higher in the first trimester group compared to the

third trimester.

We found 7519 genes to be differentially expressed between first

and third trimester placentas (Figure 1 and TableS1), representing

almost 25% of the genes spotted on the array. Principal

component analysis (PCA) showed a clear separation between

first and third trimester placentas (Figure 2). Panther analysis with

Bonferroni correction for multiple testing (p#0.01) showed several

biological processes (Figure 3a) and molecular pathways (Figure 3b)

to be differentially expressed between the groups. Among

differentially expressed genes, those involved in biological

processes such as nucleic acid metabolism, protein metabolism

and modification, mRNA transcription, cell cycle, cell structure

and motility were highly (p#0.001) up-regulated in the first

trimester placentas, whereas cell surface receptor mediated signal

transduction, G-protein mediated signalling, ion transport,

neuronal activities and chemosensory perception were up-

regulated in the third trimester. Pathway analysis indicated that

genes involved in angiogenesis, Huntington disease, Parkinson

disease, Ubiquitin proteasome, Ras and Notch signalling pathways

were differentially expressed between first and third trimesters. We

used Human Neurogenesis and Neural Stem Cell PCR Array to

test the hypothesis that brain and placenta might share common

developmental pathways. We found that twenty six out of the 84

genes (31%) represented on the PCR array that are known to be

involved in human neurogenesis were significantly (i.e $2 fold)

differentially expressed between first and third trimester placentas

(Figure S1). Of these 26 genes, 12 showed good correlation with

PCR, 9 genes had low expression levels in microarrays, 1 gene was

not differentially expressed between the groups in microarrays and

4 genes had opposite expression in microarrays compared to PCR

(Table S2).

We further investigated gene expression profiles of 50 known

imprinted human genes between first and third trimester

placentas. Many of these genes were not present on the array or

had very low intensity signals. However, PCA based on the

expression of 17 imprinted genes could clearly differentiate first

and third trimester placentas (Figure S2). We validated this result

by RT-PCR for 6 selected imprinted genes and found that insulin-

like growth factor 2 (IGF2) and Pleckstrin homology-like domain

family A member 2 (PHLDA2) were differentially expressed

between the groups (Table S3).

Table 1. Phenotype of the study population.

I trimester (n = 16) III trimester (n = 21) p-value

Maternal age (years) 28.1966.8 30.2464.8 0.3

Gravidity (n 6 standard error) 3.360.5 2.960.6 0.5

Parity n (n 6 standard error) 160.3 1.360.5 0.7

Smoking n (%) 9 (56) 3 (14) 0.01

Gestational age at sampling (days) 71.268 27568 0.00

Data are presented as mean 6 SD, n (%) or median (range). Differences between the groups were assessed using Student’s t-test for parametric and Chi-square test for
categorical variables.
doi:10.1371/journal.pone.0033294.t001

Figure 1. Venn diagram showing the number of differentially
expressed genes between the groups: smoking versus non-
smoking placentas at the first (a) and third (b) trimester of
pregnancy; and first versus third trimester placentas irrespec-
tive of smoking status(c). The areas of interception of the circles
(ab+abc) indicate 27 genes that were affected by smoking throughout
pregnancy.
doi:10.1371/journal.pone.0033294.g001

Gene Expression in I and III Trimester Placentas

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e33294



A subgroup analysis showed that 27 genes were differentially

expressed in the placentas of the women who smoked during

pregnancy compared to non-smokers, both in the first and third

trimesters of pregnancy (Figure 1). Four among the 27 genes that

were affected by smoking encode for oxidoreductases. More

specifically cyclooxygenase 2 and 5B (COX2, COX5B) and

cytochrome P450 (CYP) 2D1 and 22D7 isoforms (CYP2D1,

CYP2D7) were differentially expressed both in the first and third

trimester placentas from women smoking during pregnancy. We

validated this result by PCR on individual placental samples and

found that COX2 was up-regulated and COX5B was down-

regulated by smoking in both trimesters (Table S4).

Discussion

There is abundant literature regarding differential gene

expression profile between healthy and compromised placentas,

specially in the context of preeclampsia [11]. However, differences

in gene expression profile during normal development of the

human placenta are still not fully understood. Previously only one

microarray study has addressed this issue [12]. Our aim was to

find molecular pathways involved in gestation-related physiolog-

ical changes in placental structure and function. We found that

more than half of the genes that are expressed in the human

placenta -i.e. 7519 of 12000 genes expressed in placenta - change

their expression profile from the first to the third trimester of

pregnancy, which confirms that the placenta undergoes a

profound molecular rearrangement in order to adapt to the

changing demands of the fetus.

Genes related to biological processes such as nucleic acid

metabolism, protein metabolism and modification, mRNA

transcription, cell cycle, cell structure and motility were highly

expressed in the first trimester placentas indicating that the

placenta undergoes intense cell proliferation and differentiation

during this period. This observation is in accordance with the

findings of Mikheev et al [12] and is also supported by another

genomic study on human placenta [13]. Longitudinal studies on

gene expression in human placenta are lacking mainly due to

ethical constraints. However, a study in mice suggested that a

transition occurs at mid-gestation and different genes are

expressed by the same cellular populations without any major

morphological changes in the placenta [14]. Moreover, a human

microarray study of basal plate biopsy specimens of the maternal-

fetal interface showed dramatic changes between midgestation and

term [15]. This is in line with the pattern of fetal and placental

weight gain seen in human pregnancy. In early gestation the

weight of the placenta is higher and increases more rapidly than

the weight of the fetus, but the placental growth slows down later

in gestation while that of the fetus continues with an apparent

cross-over around mid-gestation.

Figure 2. Two-dimensional principal component analysis of the differentially expressed placental genes with best t-scores in the
main analysis. Each spot represents a placental sample: 16 first trimester placentas (black spots) and 21 third trimester placentas (red spots).
doi:10.1371/journal.pone.0033294.g002

Gene Expression in I and III Trimester Placentas
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Pathway analysis of the differentially expressed genes between

first and third trimester placentas showed angiogenesis to be highly

active in first trimester. Other molecular pathways that were up-

regulated in the first trimester placentas are involved in

neurodegenerative disorders, namely Huntington disease, Parkin-

son disease and Notch signalling pathway. Our results from the

Neurogenesis and Neural Stem Cell PCR Array showed an overall

good correlation between microarray and PCR (Table S2). This is

in accordance with Morey J. et al. [16] who found that genes

exhibiting at least 1.4 fold change and p-value of #0.0001 in

microarray analyses consistently yield significant correlations of at

least 0.80 for array and PCR data. Furthemore, our results

indicate that there might be common developmental pathways

between brain and placenta. Indeed stem cells derived from

human placenta can be differentiated into neural progenitors in

vitro [17]. Moreover, the placenta produces a wide range of

neurohormones [18] that might affect fetal brain development

[19]. In a previous study we found similar neurologic molecular

pathways to be up-regulated in placentas affected by preeclampsia

[20]. One can thus hypothesize that misregulation of these

molecular pathways in early pregnancy could result in early

pregnancy loss, preeclampsia or IUGR.

Imprinting is an important genetic phenomenon occurring in

mammals [21]. Many genes undergoing epigenetic modifications

are expressed and specifically imprinted in the human placenta

[22]. Placental imprinting seems to be a dynamic process

occurring throughout pregnancy [23]. Using whole genome

methylation data in first and third trimester placental tissue, a

methylation-induced down regulation has been demonstrated for a

set of tumour-associated genes, as part of normal placentation

[24]. We found that expression of imprinted genes occurs in a

temporal manner during normal human placental development.

We demonstrated that IGF2 and PHLDLA2 were differentially

expressed between first and third trimester placentas. Unfortu-

nately, we are not able to include allele-specific analysis of

heterozygous samples because we did not collect maternal and

paternal blood samples. However, according to Monk et al [25]

who assessed the imprinting status of placental-specific imprinted

genes using first and third trimester placental tissue with

corresponding maternal and –for the third trimester only- paternal

blood samples, the expression of these genes is largely biallelic

throughout pregnancy. It has been shown that epigenetic

modifications of these genes have direct effects on placental size

and morphology as well as placental transport capacity [26].

Environmental conditions can also alter the epigenetic status of the

placenta which in turn affects fetal growth and development [26].

Moreover, several studies have shown that epigenetic disturbances

can be associated with placenta-related disorders such as IUGR

and preeclampsia.

It is known that smoking has significant morphological and

functional effects on the placenta [27]. Several studies have

investigated the impact of maternal smoking on placental gene

expression at term [28,29]. These studies have indicated that

several genes encoding for xenobiotic-metabolising enzymes of the

CYP complex are up-regulated by smoking in a temporal manner.

Interestingly, fetal exposure to tobacco increases placental

CYP1A1 expression, through hypomethylation of its gene

transcription factor binding element [30]. Moreover, Mikheev et

al have indicated that the expression of several CYPs is regulated

in the normal palecnta of non smoking mothers depending on

gestational age, probably because these enzymes are also involved

in steroid metabolism [12]. Therefore we performed subgroup

analysis in placentas obtained from women who smoked in the first

(n = 9/16, 56%) and third (n = 3/21, 14%) trimester compared to

non smokers. Although there was an unbalanced proportion of

smokers between the groups, data analysis showed that 793

(ac+abc+bc in figure 1) of 7519 (9.5%) differentially expressed

genes were affected by smoking. This indicates that the effect of

smoking on global placental gene expression profile is limited

compared to the effect of placental maturation. Furthermore, we

found in microarrays that only 27 (ab+abc in figure 1) placental

genes were affected by smoking both in the first and third

Figure 3. Box plots of the biological processes (3a) and molecular pathways (3b) that were differentially expressed between first
and third trimester placentas. The x axis represents the number of genes involved in each process/pathway that were differentially expressed
between the groups.
doi:10.1371/journal.pone.0033294.g003
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trimester; four of which are oxidoreductases. PCR validation of

these genes showed specific regulation of COX2 and COX5B by

smoking regardless of gestational age. Moreover, there is

epidemiologic evidence that maternal cigarette smoking during

pregnancy reduces the risk of developing preeclampsia in both

primiparous and multiparous women [31,32]. Interestingly, we

previously found several oxidoreductases to be differentially

expressed between preeclamptic and normal placentas (suppl

table 1 in reference 20). It seems therefore reasonable to assume

that the regulation of specific xenobiotic enzymes from early

pregnancy until term in smoking mothers might protect them

against preeclampsia.

In conclusion, we found profound differences in global gene

expression profile between first and third trimester human

placenta reflecting temporal changes in placental structure and

function. Epigenetic rearrangements in the human placenta seem

to occur across gestation, indicating the importance of environ-

mental influence in the developing feto-placental unit. Smoking

affects specific placental oxidoreductases throughout pregnancy.

Methods

Study population
We recruited 24 healthy women with uncomplicated pregnan-

cies that were delivered at term and 16 women undergoing

surgical termination of pregnancy for social reasons, between 9–12

weeks of gestation. All women were healthy, Caucasian and had

low risk pregnancies. Gestational age was assigned by abdominal

ultrasound at 18–20 weeks of gestation and by transvaginal

ultrasound before termination of pregnancy. All pregnant women

recruited to the study had a physical examination and ultraso-

nography #48 hours before delivery or termination of pregnancy.

The study was approved by the Regional Ethics Committee for

Medical Research - North Norway (REK-Nord 94/2004) and

informed written consent was obtained from all participants.

Placental sample collection and conservation
Third trimester placental samples were obtained immediately

after delivery. Chorionic tissue was dissected from a standardized

location (approximately 2 cm beside the umbilical cord insertion,

from the middle layer of placenta midway between maternal and

fetal surfaces). Placental samples were collected from macroscop-

ically normal areas excluding sites of infarction, haemorrhage and

fibrin deposition. Chorionic tissue was obtained immediately after

termination of pregnancy from first trimester placentas and was

separated from decidua using light microscopy. The collected

specimen was transferred to a Petri dish and washed thoroughly

with physiological saline to remove any contamination with

maternal blood and amniotic fluid. Each tissue sample was

transferred to tubes containing 1.5 ml RNAlater solution (RNA

stabilization reagent, Qiagen GmbH, Germany), and stored at

270uC until RNA isolation, microarray experiment and RT-PCR

was performed.

RNA isolation and quality/quantity control
Disruption and homogenization of tissue specimens were

performed in lysis buffer using the MagNa Lyser Instrument

(Roche Applied Science, Germany), according to the manufac-

turer’s instructions. Isolation of total RNA was performed using

the MagNa Pure Compact RNA isolation kit and the MagNa Pure

Compact Instrument (Roche Applied Science, Germany). RNA

was quantified by measuring absorbance at 260 nm, and RNA

purity was determined by the ratios OD260 nm/280 nm and

OD230 nm/280 nm using the NanoDrop instrument (Nano-

DropH ND-1000, Wilmington, USA). The RNA integrity was

determined by electrophoresis using the Agilent 2100 Bioanalyser

(Matriks, Norway). Only samples with RNA Integrity Number

(RIN) .7.2 were used for microarray.

Microarray experimental design
mRNA was extracted for hybridization from 24 third trimester

and 16 first trimester placental samples. Three third trimester

placentas were excluded due to RIN,7.2. A total of 37

hybridisations were performed applying a direct comparison

design.

Microarray procedures
Total RNA samples were processed into digoxigenin (DIG)-

labelled cRNA using the Applied Biosystems Chemiluminescent

NanoAmpTM RT-IVT Labeling Kit. The labelled DIG-cRNA

(10 mg per microarray) was then injected into each microarray

hybridization chamber. Following hybridization at 55uC for

16 hours, the unbound material was washed from the microarrays.

Features that retained bound DIG-labelled cRNA were visualized

using the Applied Biosystems Chemiluniescence Detection Kit.

Anti-DIG alkaline phosphatase was used to hydrolyse a chemilu-

minescence substrate to generate light at 458 nm which was than

detected by the Applied Biosystems 1700 Chemiluninescent

Microarray Analyzer. The Human Genome Survey Microarray

v.2.0 (Applied Biosystems) with 32878 probes for the interrogation

of 29098 genes was used for microarray analysis.

Data processing and statistical analysis
Microarrays were scanned and preprocessed using the R

bionconductor package (http://www.r-project.org) (scripts at-

tached in Table S5). Probes with unusual signal patterns were

flagged by the scanner and signal strength set to NA (not a

number). Arrays showing low correlation between hybridization

controls were removed. Missing intensity values were imputed

using the nearest neighbour method [33]. The resultant intensity

matrix was normalised by quantile normalization [34]. Probes

with a log2 average signal less than 8 and a variance less than 0.1

were removed as background. PCA was performed on the

remaining probes. Principal component 1 accounted for 27% of

cumulative variance, and principal component 2 for 10% of the

cumulative variance.

Gene annotations
We used Protein ANalysis THrough Evolutionary Relationships

(PANTHER) [35] which is a freely available, comprehensive

software system for relating gene sequence to specific molecular

functions, biological processes and pathways (http://www.

pantherdb.org). The expression data analysis tool, with Bonferroni

correction for multiple testing, was used in order to find signalling

pathways that might be involved in normal placental development.

Database submission of microarray data
The microarray data were prepared according to minimum

information about a microarray experiment (MIAME) recom-

mendations [36] and deposited in the Gene Expression Omnibus

(GEO) database: http://www.ncbi.nlm.nih.gov/geo/. The GEO

accession number for the platform is GSE28551, samples GSM

707051-GSM 707087.

Validation of microarray results by PCR-array and RT-PCR
We carried out quantitative RT-PCR with 200 mg total RNA

isolated from a pool of first and a separate pool of third trimester

Gene Expression in I and III Trimester Placentas
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chorionic tissue, using RT2 ProfilerTM Human Neurogenesis and

Neural Stem Cell PCR Array (PAHS-404, SABiosciences

Corporation, USA) according to the manufacturer’s instructions.

The plate contains primers for 84 genes related to the regulation of

key neurogenesis processes such as the cell cycle and cell

proliferation, differentiation, motility, and migration. This array

contains the growth factors and cytokines related to neural stem

cells as well as genes involved in synaptic functions, apoptosis and

cell adhesion. For detailed layout of the array see http://www.

sabiosciences.com/rt_pcr_product/HTML/PAHS-404A.html.

Actin beta (ACTB) was used as housekeeping gene. Analysis of

fold changes was done by the DDCt method using the integrated

web-based software package for the PCR Array System.

Further, the expression of selected six imprinted genes was

validated by RT-PCR. The selection was based on: a) their colour

intensity on the heat map and b) existing information in the

literature on these genes regarding their role in placental

development and disease. We chose to perform RT-PCR for

each of these genes on every individual placenta in order to find

differences in expression between the two trimesters, as well as to

explore the range of normal variations in expression within

samples in the same trimester. This method is more accurate,

although it necessitates more mRNA.

Total RNA was reverse transcribed using iScript cDNA

Synthesis Kit (Bio-Rad Laboratories, Cat# 170-8891) as described

by the manufacturer’s protocol. RT- PCR amplification was

performed with an ABI HT7900 Instrument (Applied Biosystems)

using the FastStart TaqMan Probe Master [Rox] (Roche, Cat.

No. 04673468001) with addition of Rox Reference Dye (Roche,

Cat. No. 04673549001). Thermal cycling conditions were as

follows: denaturation for 10 minutes at 95uC, then 40 cycles PCR

with denaturation for 15 seconds at 95uC; annealing and

extension for 1 minute at 60uC. Sample volume used was

20 mL. Primers and probes were constructed by using Universal

ProbeLibrary program (Roche), given in Table S6. The primers

were synthesized and purified by Thermo Fisher Scientific

(Germany) and the primers for the housekeeping genes by

Eurogentec S.S. (Belgium). The probes were obtained from

Universal ProbeLibrary Probes 1–165 (Roche). Cyclophylin A

and hypoxanthine phosphoribosyl-transferase 1 (HPRT) were used

as reference genes. Samples for each experiment were run in

duplicate and averaged for final quantification. The fold

inductions were calculated as described previously [37].

Supporting Information

Figure S1 Scatter plot of the log transformed expression
ratio of all 84 genes spotted on the RT2 ProfilerTM
Human Neurogenesis and Neural Stem Cell PCR Array.

Each spot represents a gene. The colour represents the level of

gene expression: red indicates up-regulation in the third trimester

(group 1); green indicates up-regulation in the first trimester

(control group). The black spots represent genes that had a relative

expression of #2 fold between the groups.

(JPG)

Figure S2 Two-dimensional principal component anal-
ysis of the differentially expressed placental imprinted
genes. Each spot represents a placental sample: 16 first trimester

placentas (black spots) and 21 third trimester placentas (red spots).

(JPG)

Table S1 List of all the genes, including fold-change and
p-value, which were present on the arrays.
(XLS)

Table S2 Expression of the 26 genes that had a fold
change of $2 in Neurogenesis PCR array and their
relative expression (fold-change and p-value) in micro-
arrays.
(XLS)

Table S3 Expression of selected imprinted genes (IGF2,
PHLDA2, PLAGL1, SNPRN and SLC22A18) in individual
placental samples, in the first and third trimester of
pregnancy.
(XLS)

Table S4 Expression of COX2, COX5B, CYP2D1 and
CYP2D7 in placental samples obtained from women
who smoked tobacco compared to women who did not
smoke tobacco throughout pregnancy.
(XLS)

Table S5 R bionconductor scripts used for processing
microarray data.
(TXT)

Table S6 Primers and probes used for RT-PCR valida-
tion.
(DOC)
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reagents/materials/analysis tools: VS CF ÅV. Wrote the paper: VS GA.
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