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1. Introduction

Diseases caused by parasitic protozoa, as for instance malari
dysentery, leishmaniasis, and human African trypanosomiasis ar
major causes of mortality throughout the world, thus, the stud
of effects of organic compounds on protozoa is important. Thera
peutic agents are available [1,2] however, many of the drugs hav
critical side effects [3,4] and also resistance is emerging [5,6
Therefore, identification of new lead compounds is required, an
inhibition of cellular kinase activity has been recognised as a usefu
strategy [7–11]. Among others, tyrosine kinase inhibitors such a
Erlotinib, Canertinib and Sunitinib designed for cancer chemother
apy have been identified as efficient antiprotozoal agents [11].

Tetrahymena is a genus of ciliated protozoa. Its members ar
easily grown and relatively safe to handle making them usefu
model systems for biochemical mechanistic studies in eukaryote
[12]. The motility behaviour of Tetrahymena is conveniently use
to monitor bioactivity and cell toxicity of chemicals [13–15
Compounds such as diphenols, aminophenols, diaminoaromatic
halogenated aromatic nitro compounds, aromatic aldehydes an
a-haloketones are generally toxic to Tetrahymena. This is due t
their ability to undergo various reactions with biomacromolecule
[16–19]. Tetrahymena do not pose a serious threat to huma
health. However, Legionella in symbiosis with Tetrahymena trop
calis appears more resistant and aggressive [20,21]. In addition

0045-2068/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.bioorg.2012.06.003
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itors, were tested for their protozoal toxicity using an environmental Tetrahy
nism. The protozoacidal activity of the analogues was found to be high
group at the 6-aryl ring, and a chiral 1-phenylethanamine substituent in pos
was affected by the aromatic substitution pattern of the phenylethanamin
-fluoro and the para-bromo substituted derivatives had the lowest minimum
ns (8–16 lg/mL). Surprisingly, both enantiomers were found to have hig
is compound class could have several modes of action. No correlation wa
nds protozoacidal activity and the in vitro epidermal growth factor recepto
otency. This suggests that the observed antimicrobial effects are related t

rds a panel of kinases indicated several alternative modes of action.
� 2012 Elsevier Inc. All rights reserve

infections attributed to members of this genus are a problem i
closed fish farming. Low molecular weight compounds such a
Menadione (I) [22], and anti-infective agents such as Niclosamid
(II) have been proposed as treatment alternatives [23]. Other com
pounds with in vitro activity towards Tetrahymena include amon
others Climacostol (III) [24], known antimicrobial agents as Chlo
roquine [25] and Chloroamphenicol [26,27] and antineoplastic
such as Necodazole [28], Fig. 1.

Tetrahymena are known to have epidermal growth facto
(EGF)-like receptors which are involved in cell division [29], an
cyst formation [30]. Also other processes such as chemotax
[31], hormonal imprinting [32], cell division [33,34], stres
response [34,35], and GTP signalling [36], are triggered an
controlled by kinase activity. Using an environmental Tetrahymen
isolate as model, we have evaluated the potency of a series o
6-aryl-7H-pyrrolo[2,3-d]pyrimidine-4-amines as antiprotozoal agent
One goal has been to identify new lead compounds for combatin
protozoa. Secondly, the study could shed light on the toxicit
profile of this compound class since some of the derivatives ar
efficient inhibitors of the epidermal growth factor receptor tyro
sine kinase (EGFR-TK) in vitro [37].

2. Materials and methods

2.1. General

1H and 13C NMR spectra were recorded with a Bruker Avanc
400 spectrometer operating at 400 MHz and 100 MH
), http://dx.doi.org/10.1016/j.bioorg.2012.06.003

http://dx.doi.org/10.1016/j.bioorg.2012.06.003
mailto:bard.helge.hoff@chem.ntnu.no
http://dx.doi.org/10.1016/j.bioorg.2012.06.003
http://www.sciencedirect.com/science/journal/00452068
http://www.elsevier.com/locate/bioorg
http://dx.doi.org/10.1016/j.bioorg.2012.06.003
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Pl
spectively. 19F NMR was performed on a Bruker Avance 600
erating at 564 MHz. The 19F NMR shift values are relative to
xafluorobenzene. Coupling constants are in Hertz. HPLC (Agilent
0-Series) with a G1379A degasser, G1311A Quatpump, G1313A
S autosampler and a G1315D Agilent detector (230 nm) was
ed to determine the purity of the synthesised compounds. Con-
tions: a Omrisphere 5 C18 (100 � 3.0 mm) column, flow rate

mL/min, elution starting with H2O + 1% TFA/acetonitrile (98/
, linear gradient elution for 15 min. ending at acetonitrile/
ter+1% TFA (90/10), then 15 min isocratic elution. The software

ed with the HPLC was Agilent ChemStation. Accurate mass
termination was performed with EI (70 eV) using a Finnigan
AT 95 XL. FTIR spectra were recorded on a Thermo Nicolet Avatar
0 infrared spectrophotometer. All melting points are uncor-
cted and measured by a Büchi melting point instrument. Optical
tation was measured with a PerkinElmer Instruments Model 341
larimeter.

. Isolation and characterisation of Tetrahymena

The Tetrahymena strain used was originally isolated from pond
ter in Norway and was identified to the genus level based on its
enotype and on partial sequencing of the 18S rDNA-gene. The
quence had 100% identity with reported sequences for Tetrahy-
na iwoffi, Tetrahymena tropicalis and Tetrahymena furgosoni.
e strain was maintained on non-nutrient agar (CCAP, Scotland)
eded with a thick suspension of pasteurised Escherichia coli prior
testing. The strain and further information on the sequencing
dies can be made available on request.

. Determination of minimum protozoacidal (MPC) concentrations

Stock solutions of the agents were made in DMSO at a concen-
tion of 5120 lg/mL. Benzalkonium chloride (stock in water) was

cluded as control. Water was used as dilutant producing dou-
ng concentrations of the agents at 128–4 lg/mL. These interme-

ate dilutions (50 lL) were pipetted in triplicate into a 96-well,
nc� round-bottomed microtiter plate system (Thermo Fischer

ientific, USA). Addition of 50 lL of the inoculum gave the final
sted concentration range (2–64 lg/mL) and maximally 1.25%

SO. A positive control (no agent), and a negative control (with-
t Tetrahymena) tests were also included. Tetrahymena was
own on NNA seeded with a thick pasteurised suspension of
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Fig. 1. Structure of compounds I–III with potency towards Tetrahym
ease cite this article in press as: S.J. Kaspersen et al., Bioorg. Chem. (2012), http
coli for 48 h under a humidified atmosphere in the dark at
± 2 �C. After incubation, protozoa were harvested and washed
previously described [38], and resuspended in pasteurised
coli (corresponding to a MacFarland 0.5 standard) at
104 cells/mL. After incubation for 48 h at 22 ± 2 �C, wells were

amined for motile cells using an inverted microscope. This ap-
oach enabled the whole content of the well to be visualised.
e estimated minimum protozoacidal concentration (MPC; 48 h)
s the lowest concentration at which no motile cells were seen.

ter examination in the microscope, the whole content of wells
s transferred to culture dishes containing NNA/pasteurised
coli. Cultures were examined over a 7-day period with an in-
rted microscope to see if a cell population developed. The MPC
lue measured (MPC; 7 days) was the lowest concentration that
evented the development of even a single viable cell in the 7-
y period. Each test was performed in triplicate and the results
re averaged to give the MPC value.

. Kinase profiling

Compound (R)-25e was profiled utilising a panel of 124 protein
ases in the MRC National Centre for Protein Kinase Profiling Ser-
e at the University of Dundee (http://www.kinase-screen.mrc.a-
k). The compound was tested in vitro, in duplicate, at a final

ncentration of 50 nM. For further details of the methodology
e Bain et al. [39].

. Synthesis

Detailed description of the synthesis and characterisation of
ost of the intermediates and tested compounds can be found
ewhere [37,40]. The synthesis and characterisation of the new
emical entities are given below.

.1. General procedure thermal amination to 20–24
The following is representative: 4-chloro-6-(4-methoxy-
enyl)-7H-pyrrolo[2,3-d]pyrimidine (14) (275 mg, 1.06 mmol)
d (S)-1-phenylethanamine ((S)-19i) (0.44 mL, �3.5 mmol) were
ded to a dry round bottle flask containing 1-butanol (3.5 mL) un-
r argon atmosphere. The mixture was heated at 145 �C for 24 h.
e precipitate formed upon cooling to rt. was isolated by filtra-
n, washed with diethyl ether (25 mL) and dried resulting in a
lid.
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and the kinase inhibitors Canertinib (IV) and Sunitinib (V).
://dx.doi.org/10.1016/j.bioorg.2012.06.003
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2.5.1.1. (S)-6-(4-Methoxyphenyl)-N-(1-phenylethyl)-7H-pyrrolo[2,3
d]pyrimidin-4-amine ((S)-20e). The compound was prepared a
described in Section 2.5.1 starting with 4-chloro-6-(4-methoxy
phenyl)-7H-pyrrolo[2,3-d]pyrimidine (14) (159 mg, 0.61 mmo
and (S)-1-phenylethanamine (19e) (222 mg, 1.84 mmol). This gav
179 mg (0.52 mmol, 85%) of a white solid, mp. 226–228 �C
½a�20

D = + 289 (c 0.17, DMSO). Spectroscopic properties were in cor
respondence with that reported previously for the (R)-enantiome
[40]. 1H NMR (400 MHz, DMSO-d6) d: 11.92 (s, 1H, NH, H-7), 8.0
(s, 1H, H-2), 7.73 (m, 3H), 7.43 (m, 2H), 7.30 (m, 2), 7.19 (m, 1H
7.02 (d, J = 8.8, 2H), 6.96 (bs, 1H, H-5), 5.50 (m, 1H), 3.80 (s, 3H
1.53 (d, J = 7.0, 3H). HRMS (EI): 344.1634 (calcd C21H20N4O
344.1632, M+).

2.5.1.2. (R)-6-(4-Methoxyphenyl)-N-(1-(4-methoxyphenyl)ethyl)-7H
pyrrolo[2,3-d]pyrimidin-4-amine ((R)-20h). The compound wa
prepared as described in Section 2.5.1 starting with 4-chloro-6
(4-metoxyphenyl)-7H-pyrrolo-[2,3-d]-pyrimidine (14) (238 m
0.92 mmol) and (R)-(4-methoxyphenyl)ethanamine (19h
(288 mg, 1.90 mmol). This gave 220 mg (0.59 mmol, 64%) of a
off-white solid, mp. 249–251 �C, ½a�20

D = �330.1 (c 0.14, DMSO
purity > 99% (by HPLC). 1H NMR (400 MHz, DMSO-d6) d: 11.89 (
1H, NH, H-7), 8.04 (s, 1H), 7.71 (d, J = 8.9, 2H), 7.64 (d, J = 8.4, 1H
NH), 7.34 (d, J = 8.7, 2H), 7.02 (d, J = 8.9, 2H), 6.94 (s, 1H, H-5
6.86 (d, J = 8.7, 2H), 5.45 (m, 1H), 3.80 (s, 3H), 3.71 (s, 3H), 1.5
(d, J = 7.0, 3H). 13C NMR (100 MHz, DMSO-d6) d: 158.6, 157.9
154.8, 151.3 (2C), 137.5, 133.4, 127.2 (2C), 125.9 (2C), 124.5
114.4 (2C), 113.5 (2C), 103.9, 94.6, 55.2, 55.0, 48.0, 22.9. HRM
(ESI): 375.1814 (calcd C22H22N4O2, 375.1816, M + H+). IR (nea
cm�1): 3099, 2973, 1588, 1244, 830.

2.5.1.3. (S)-N-(1-(4-Bromophenyl)ethyl)-6-(4-methoxyphenyl)-7H
pyrrolo[2,3-d]pyrimidin-4-amine ((S)-20i). The compound wa
prepared as described in Section 2.5.1 starting with 4-chloro-6
(4-methoxyphenyl)-7H-pyrrolo-[2,3-d]-pyrimidine (14) (190 m
0.73 mmol) and (S)-1-(4-bromophenyl)ethanamine (19i) (439 m
2.19 mmol). This gave 245 mg (0.58 mmol, 79%) of a white solid
mp. 274–275 �C, ½a�20

D = +309 (c 0.21, DMSO). Spectroscopic proper
ties were in correspondence with that reported previously for th
(R)-enantiomer [37]. 1H NMR (400 MHz, DMSO-d6) d: 11.93 (
1H, NH, H-7), 8.03 (s, 1H, H-2), 7.76 (s, 1H, NH), 7.73 (m, 2H
7.49 (m, 2H), 7.38 (m, 2H), 7.02 (m, 2H), 6.94 (d, J = 1.8, 1H, H-5
5.44 (m, 1H), 3.80 (s, 3H), 1.51 (d, J = 7.0, 3H). HRMS (EI
422.0739 (calcd C21H19BrN4O, 422.0737, M+)

2.5.1.4. 6-(4-Methoxyphenyl)-N-(1-naphthalen-1-ylmethyl)-7H-py
rolo[2,3-d]pyrimidin-4-amine (20o). The compound was prepare
as described in Section 2.5.1 starting with 4-chloro-6-(4-methoxy
phenyl)-7H-pyrrolo[2,3-d]pyrimidine (14) (154 mg, 0.59 mmo
and naphthalen-1-ylmethanamine (19o) (280 mg, 1.78 mmol
This gave 173 mg (0.45 mmol, 77%) of a white solid, mp 278
281 �C. 1H NMR (400 MHz, DMSO-d6) d: 11.98 (s, 1H, NH, H-7
8.21–8.19 (m, 1H), 8.14 (s, 1H, H-2), 7.97–7.94 (m, 2H), 7.86
7.84 (m, 1H), 7.71–7.69 (m, 2H), 7.57–7.52 (m, 3 H), 7.49–7.4
(m, 1H), 7.01–7.00 (m, 2H), 6.89 (s, 1H, H-5), 5.20 (d, J = 5.6, 2H
3.79 (s, 3H). 13C NMR (100 MHz, DMSO-d6), d: 159.1, 155.8, 151.
(2C, overlap), 135.7, 134.2, 133.8, 131.5, 128.9, 127.8, 126.6
126.4 (2C), 126.2, 125.9, 125.7, 124.9, 124.0, 114.9 (2C), 104.4
95.0, 55.6, 41.9. IR (neat, cm�1): 3152, 1597,1254,769. HRMS (EI
380.1632 (calcd C24H20N4O, 380.1632, M+).

2.5.1.5. (R)-6-(4-Methoxyphenyl)-N-(1-(naphthalen-1-yl)ethyl)-7H
pyrrolo[2,3-d]pyrimidin-4-amine ((R)-20p). The compound wa
prepared as described in Section 2.5.1 starting with 4-chloro-6
(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine (14) (144 m
0.55 mmol) and (R)-1-(naphthalen-1-yl)ethanamine (19p
Please cite this article in press as: S.J. Kaspersen et al., Bioorg. Chem. (2012
(285 mg, 1.66 mmol). This gave 162 mg (0.41 mmol, 74%) of
white solid, mp. 274–276 �C, ½a�20

D = �432 (c 0.37, DMSO). Spectro
scopic properties were in correspondence with that reported prev
ously for the racemate [37]. 1H NMR (400 MHz, DMSO-d6) d: 11.9
(s, 1H, NH, H-7), 8.24 (d, J = 8.2, 1H), 8.04 (s, 1H, H-2), 7.94 (m, 1H
7.01 (m, 2H), 6.97 (s, 1H, H-5), 6.27 (m, 1H), 3.79 (s, 3H), 1.67 (d
J = 6.8, 3H). IR (neat, cm�1): 3131, 2962 1624, 1251, 828, 775
HRMS (EI): 394.1783 (calcd C25H22N4O, 394.1794, M+).

2.5.1.6. (R)-N-(1-(Naphthalen-1-yl)ethyl)-6-phenyl-7H-pyrrolo[2,3
d]pyrimidin-4-amine ((R)-21p). The compound was prepared a
described in Section 2.5.1 starting with 4-chloro-6-(4-phenyl
7H-pyrrolo[2,3-d]pyrimidine (15) (87 mg, 0.38 mmol) an
(R)-1-(naphthalen-1-yl)ethanamine (19p) (195 mg, 1.14 mmol
This gave 107 mg (0.29 mmol, 76%) of a white solid. The soli
at 200 �C, ½a�20
D = �481 (c 1.00, DMSO), purity: 98% (by HPLC). 1

NMR (400 MHz, DMSO-d6) d: 12.07 (s, 1H, NH, H-7), 8.26–8.2
(m, 1H), 8.08 (s, 1H, H-2), 8.01–7.93 (m, 2H), 7.82–7.77 (m, 3H
7.67–7.66 (m, 1H), 7.59–7.41 (m, 5H), 7.30–7.27 (m, 1H), 7.14 (
1H, H-5), 6.32–6.25 (m, 1H), 1.68 (d, J = 6.8, 3H). 13C NM
(100 MHz, DMSO-d6) d: 155.3, 152.3, 152.0 141.3, 133.92, 133.87
132.3, 131.1, 129.42 (2C), 129.1, 127.7, 127.6, 126.6, 126.0, 125.9
124.9 (2C), 123.8, 122.7, 104.4, 60.2, 96.7, 22.3. IR (neat, cm�1

2976, 1586, 1471, 1311, 774, 749. HRMS (EI): 364.1683 (calc
C24H20N4, 364.1682, M+).

2.5.1.7. (S)-N-(1-(Naphthalen-1-yl)ethyl)-6-phenyl-7H-pyrrolo[2,3
d]pyrimidin-4-amine ((S)-21p). The compound was prepared as de
scribed in Section 2.5.1 starting with 4-chloro-6-(4-phenyl)-7H
pyrrolo[2,3-d]pyrimidine (15) (70 mg, 0.30 mmol) and (S)-1-phen
ylethanamine (19e) (156 mg, 0.91 mmol). This gave 84 m
(23 mmol, 77%) of a white solid, mp. 162–166 �C, ½a�20

D = +422 (
1.00, DMSO), purity: 98% (by HPLC). The spectroscopic propertie
corresponded with that reported for (S)-21p in Section 2.5.1.6
HRMS (EI): 364.1682 (calcd C24H20N4, 364.1682, M+).

2.5.1.8. (R)-6-(4-Fluorophenyl)-N-(1-(naphthalen-1-yl)ethyl)-7H
pyrrolo[2,3-d]pyrimidin-4-amine ((R)-22p). The compound wa
prepared as described in Section 2.5.1 starting with 4-chloro
6-(4-fluorophenyl)-7H-pyrrolo[2,3-d]pyrimidine (16) (64 m
0.26 mmol) and (R)-1-(naphthalen-1-yl)ethanamine (19p
(133 mg, 0.78 mmol). This gave 70 mg (0.18 mmol, 70%) of a whit

20
6

8.26–8.24 (m, 1H), 8.08 (s, 1H, H-2), 7.99–7.93 (m, 2H), 7.82
7.80 (m, 3H), 7.67–7.65 (m, 1H), 7.58–7.45 (m, 3H), 7.31–7.2
(m, 2H), 7.09 (s, 1H, H-5), 6.31–6.25 (m, 1H), 1.68 (d, J = 6.8, 3H
13C NMR (100 MHz, DMSO-d6), d: 161.9 (d, J = 244.5), 155.3
152.3 (2C), 152.0, 141.3, 139.9, 133.0, 131.1, 129.1, 128.9 (d
J = 2.9), 127.6, 126.9 (d, J = 7.9), 126.6, 126.0 (d, J = 3.5, 2C), 123.8
122.7, 116.4 (d, J = 21.7, 2C), 104.4, 96.6, 60.2, 22.2. 19F NM
(564 MHz, DMSO-d6, C6F6) d: �117.1 (m). IR (neat, cm�1): 2985
1585, 1496, 1312, 1233, 834, 774. HRMS (EI): 382.1585 (calc
C24H19FN4, 382.1586, M+).

2.5.1.9. (S)-6-(4-Fluorophenyl)-N-(1-(naphthalen-1-yl)ethyl)-7H-pyr
rolo[2,3-d]pyrimidin-4-amine ((S)-22p). The compound wa
prepared as described in Section 2.5.1 starting with 4-chloro
6-(4-fluorophenyl)-7H-pyrrolo[2,3-d]pyrimidine (16) (66 m
0.27 mmol) and (S)-1-phenylethanamine (19p) (137 m
0.80 mmol). This gave 76 mg (0.20 mmol, 74%) of a white solid
mp. 149–152 �C, ½a�20

D = +380 (c 0.13, DMSO), purity: 98% (by HPLC
The spectroscopic properties corresponded with that reported fo
(R)-22p in Section 2.5.1.8.
), http://dx.doi.org/10.1016/j.bioorg.2012.06.003

http://dx.doi.org/10.1016/j.bioorg.2012.06.003
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286 2.5.2. General procedure demethylation of 20–25
287 The following is representative: (S)-6-(4-methoxyphenyl)-N-(1-
288 phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (20i) was dis-
289 solved in dry CH2Cl2 (2 mL) under argon atmosphere. BBr3

290 (0.17 ml, �1.8 mmol) in dry CH2Cl2 (1.5 mL) was added drop wise
291 over 1 h. at 0 �C using a syringe pump. Then the mixture was al-
292 lowed to react at 20 �C for 24 h. The reaction was quenched by
293 addition of water (10 mL), and the mixture was extracted with
294 EtOAc (3 � 25 mL). The combined organic phase was washed with
295 brine (15 mL), dried over MgSO4 and concentrated. The resulting
296 residue was purified by precipitation from acetone (0.5 mL). The
297 solid formed was isolated by filtration, washed with diethyl ether
298 (10 mL) and dried.

299 2.5.2.1. (S)-4-(4-(1-Phenylethylamino)-7H-pyrrolo[2,3-d]pyrimidin-
300 6-yl)phenol hydrobromide ((S)-25e). The compound was
301 synthesised as described in Section 2.5.2 starting from (S)-6-(4-
302 methoxyphenyl)-N-(1-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-
303 4-amine (20e) (99 mg, 0.29 mmol). This gave 56 mg, (0.14 mmol,
304 47%) of a white solid, mp > 300 �C, ½a�20

D = +289 (c 0.17, DMSO). pur-
305 ity > 98% (by HPLC) Spectroscopic properties were in correspon-
306 dence with that reported previously for the (R)-enantiomer [37].
307 1H NMR (400 MHz, DMSO-d6) d: 12.98 (s, 1H, NH, H-7), 9.83 (br
308 s, 1H, OH), 9.55 (br s, 1H, NH), 8.30 (s, 1H, H-2), 7.66 (m, 2H),
309 7.50–7.48 (m, 2H), 7.39 (m, 2H), 7.32–7.29 (m, 1H), 7.24 (s, 1H,
310 H-5), 6.89 (m, 2H), 5.37 (m, 1H), 1.66 (d, J = 6.5, 3H). HRMS (EI):
311 330.1475 (calcd C20H18N4O, 330.1475, M+).

312 2.5.2.2. (S)-4-(4-(1-(4-bromophenyl)ethylamino)-7H-pyrrolo[2,3-
313 d]pyrimidin-6-yl)phenol hydrobromide ((S)-25i). The compound
314 was synthesised as described in Section 2.5.2 starting from (S)-N-
315 (1-(4-bromophenyl)ethyl)-6-(4-methoxyphenyl)-7H-pyrrolo[2,3-
316 d]pyrimidin-4-amine (20i) (134 mg, 0.32 mol). This gave 83 mg
317 (0.17 mmol, 52%) of a white solid, mp. 274–276 �C, ½a�20

D = +272 (c
318 0.28, DMSO), purity > 97% (by HPLC). Spectroscopic properties
319 were in correspondence with that reported previously for the
320 (R)-enantiomer [37]. 1H NMR (400 MHz, DMSO-d6) d: 12.94 (s,
321 1H, NH, H-7), 9.82 (br s, 1H, OH), 9.47 (br s, 1H, NH), 8.29 (s, 1H,
322 H-2), 7.65 (m, 2H), 7.58 (m, 2H), 7.44 (m, 2H), 7.16 (s, 1H, H-5),
323 6.88 (m, 2H), 5.37 (m, 1H), 1.63 (d, J = 6.6, 3H. HRMS (EI):
324 408.0581 (calcd C20H17Br79N4O, 408.0580, M+).

325 2.5.2.3. 4-(4-(Naphthalen-1-ylmethylamino)-7H-pyrrolo[2,3-d]pyr-
326 imidin-6-yl)phenol hydrobromide (25o). The compound was
327 synthesised as described in Section 2.5.2 starting from 6-(4-
328 methoxyphenyl)-N-(naphthalen-1-ylmethyl)-7H-pyrrolo[2,3-
329 d]pyrimidin-4-amine (20o) (117 mg, 0.31 mmol) and BBr3

330 (0.29 mL, 3.1 mmol). This gave 74 mg (0.20 mmol, 66%) of a white
331 solid, mp > 300 �C. purity > 98% (by HPLC). 1H NMR (400 MHz,
332 DMSO-d6) d: 13.01 (s, 1H, H-7), 9.82 (s, 1H, OH), 8.36 (s, 1H, H-
333 2), 8.15–8.13 (m, 1H), 8.04–8.02 (m, 1H), 7.97–7.95 (m, 1H),
334 7.66–7.60 (m, 4H), 7.54–7.7.50 (m, 2H), 7.17 (s, 1H, H-5), 6.87–
335 6.89 (m, 2H), 5.26 (bs, 2H). 13C NMR (100 MHz, DMSO-d6) d:
336 158.5, 149.9, 148.6, 142.8, 138.1, 133.9, 132.1, 131.3, 129.1,
337 128.9, 127.2 (2C), 127.1, 126.7, 126.1, 125.4, 124.1, 121.7, 116.4
338 (2C), 103.5, 96.8, 43.9. IR (neat, cm�1): 3123, 1643, 1612, 1493,
339 1178, 757. HRMS (EI): 366.1471 (calcd C23H18N4O, 366.1475, M+).

340 2.5.2.4. (R)-4-(4-(1-(naphthalen-1-yl)ethylamino)-7H-pyrrolo[2,3-
341 d]pyrimidin-6-yl)phenol ((R)-25p). The compound was synthesised
342 as described in Section 2.5.2 starting (R)-6-(4-methoxyphenyl)-N-
343 (1
344 ((R
345 of
346 ity
347 de

348NMR (400 MHz, DMSO-d6) d: 12.98 (s, 1H, NH, H-7), 9.82 (br s,
3491H, OH), 9.55 (br s, 1H, NH), 8.30 (s, 1H), 8.14 (s, 1H, H-2), 8.00
350(m, 1H), 7.91 (m, 1H), 7.64–7.57 (m, 5H), 7.54–7.50 (m, 1H), 7.26
351(s, 1H, H-5), 6.89–6.87 (m, 2H), 6.09 (m, 1H), 1.78 (d, J = 6.5, 3H).
352HRMS (EI): 380.1635 (calcd C24H20N4O, 380,1637, M+).

3532.5.2.5. (S)-4-(4-(1-(Naphthalen-1-yl)ethylamino)-7H-pyrrolo[2,3-
354d]pyrimidin-6-yl)phenol hydrobromide ((S)-25p). The compound
355was synthesised as described in Section 2.5.2 starting (S)-6-(4-
356methoxyphenyl)-N-(1-(naphthalen-1-yl)ethyl)-7H-pyrrolo[2,3-d]-
357pyrimidin-4-amine ((S)-20p) (73 mg, 0.19 mmol). This gave 48 mg
358(0.13 mmol, 68%) of a white solid, mp > 300 �C. ½a�20

D = +389 (c 0.16,
359DMSO) purity > 99% (by HPLC). Spectroscopic properties were in
360correspondence with that reported previously for the racemate
361[37]. And that described for (R)-25p in Section 2.5.2.4.

3623. Result and discussion

3633.1. Synthesis

364The pyrrolopyrimidines were synthesised as described previ-
365ously, Scheme 1 [37,41,42].
366The first step forming the pyrroles 1–5 gave mediocre yields.
367We found that formation of 6–8 was the main reason for the loss
368in yield. The alcohol 6 may be caused by water generated in the
369pyrrole cyclisation, whereas the esters 7 and 8 most likely originate
370from fragmentation of the unstable aminoimidate. An increase in
371yield of 1–5 was seen when using >2 equivalents of the aminoim-
372idate and 3 equivalents of sodium ethoxide. It has previously been
373suggested that such pyrroles are UV labile [42]. Discolouration of
374the products was seen on storage in DMSO for 1 day at room tem-
375perature. Cyclisation of 1–5 using formamide gave the 4-hydroxy-
376pyrrolopyrimidines 9–13 which all were crystalline and easily
377isolated. Standard chlorination gave 14–18, which also were con-
378veniently isolated and purified if full conversion was obtained in
379the reaction. In the next step, thermal nucleophilic aromatic sub-
380stitution on 14–18 was performed using various amines. Com-
381pound 14 was reacted with 19a–q giving 20a–q, while the 4-
382chloropyrrolopyrimidines 15–18 were mainly substituted with
38319e–f and 19p, giving the corresponding 4-amino derivatives 21–
38424. Deprotection of the methoxy derivatives 20 with boron tribro-
385mide gave the phenolic compounds 25. Twelve of the compounds
386reported in this study are new chemical entities.

3873.2. Toxicity towards Tetrahymena

388The Tetrahymena strain used in this study was originally iso-
389lated from pond water in Norway.
390It was observed that this isolate grew faster and was more vig-
391orous than several of our culture collection Tetrahymena strains.
392These observations were considered important when choosing it
393as a test strain for the present study. Benzylalkonium chloride
394was used as a control in the testing showing a MPC value of
3958 lg/mL. We first investigated the effect of compounds having
396benzylamines, chiral 1-phenylethanamines and 1-naphthylethan-
397amines as substituents in Fragment B (see Table 1), and methoxy,
398hydrogen, fluoro, bromo and cyano as R in Fragment A.
399Most of the compounds were synthesised as their (R)-enantio-
400mers, but the (S)-enantiomers of the methoxy substituted
401co
402am
403ta
404de
405ot
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-(naphthalen-1-yl)ethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine
)-20p) (113 mg, 0.29 mmol). This gave 58 mg (0.15 mmol, 53%)
a white solid, mp > 300 �C. ½a�20

D = �379 (c 0.26, DMSO) pur-
> 98% (by HPLC). Spectroscopic properties were in correspon-

nce with that reported previously for the racemate [37]. 1H
ease cite this article in press as: S.J. Kaspersen et al., Bioorg. Chem. (2012), http
mpound 20e, and 20p, 21p and 22p having a 1-naphthylethan-
ine substituent at C-4 were included to investigate the impor-

nce of stereochemistry. Testing revealed that the (R)-naphthyl
rivative 20p had an MPC-value of 32 (Table 1, entry 7), while
her derivatives with R = OMe, H, F, Br and CN did not possess pro-
://dx.doi.org/10.1016/j.bioorg.2012.06.003
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Scheme 1. Synthesis of 20

Table 1
Activity of the pyrrolopyrimidines 20–24 and 25o-p towards Tetrahymena.
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Entry Substance R

1 20a OMe
2 20b OMe
3 (R)-20e OMe
4 (S)-20e OMe
5 (R)-20h OMe
6 20o OMe
7 (R)-20p OMe
8 (S)-20p OMe
9 (R)-20r OMe
tozoacidal activity with respect to Tetrahymena in the lower lg/mL
concentration range.

Solubility challenges were encountered when some of these
compounds were tested, the investigation was continued with

10 21c H
11 21e H
12 (R)-21f H
13 (R)-21p H
14 (S)-21p H
15 22c F
16 (R)-22e F
17 (R)-22f F
18 (R)-22p F
19 (S)-22p F
20 (R)-23e Br
21 (R)-23f Br
22 (R)-24e CN
23 (R)-24f CN
24 25o OH
25 (rac)-25p OH
26 (R)-25p OH
27 (S)-25p OH

a The MPC values were determined by averaging three parallel measurements.
b MPC = 32 also after 7 days.

Please cite this article in press as: S.J. Kaspersen et al., Bioorg. Chem. (2012
–25 using the amines 19a-q.

R1 Ar/R2 MPC lg/mL (48 h)a

H H >64
H p-F >64
CH3 H >64
CH3 H >64
CH3 p-MeO >64
H C10H7 >64
CH3 C10H7 32b

CH3 C10H7 >64
Et H >64
410the naphthylic compounds 25o-p which had a hydrophilic pheno-
411lic group in fragment A, (Table 1, entries 24–27). However, no dras-
412tic improvement in potency was observed. The (R)-enantiomer of
41325p (Table 1, entry 26) was the most potent and gave a similar

H m-F >64
CH3 H >64
CH3 p-F >64
CH3 C10H7 >64
CH3 C10H7 >64
H m-F >64
CH3 H >64
CH3 p-F >64
CH3 C10H7 >64
CH3 C10H7 >64
CH3 H >64
CH3 p-F >64
CH3 H >64
CH3 p-F >64
H C10H7 64
CH3 C10H7 64
CH3 C10H7 32a

CH3 C10H7 64

), http://dx.doi.org/10.1016/j.bioorg.2012.06.003

http://dx.doi.org/10.1016/j.bioorg.2012.06.003
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le 2
ivity of compounds 25 towards Tetrahymena.

Entry Substance R R2 MPC lg/ml
(48 h)a

MPC lg/ml
(7 days)a

1 25a H H >64 >64
2 25b H p-F >64 >64
3 25c H m-F >64 >64
4 25d H o-F >64 >64
5 (R)-25e CH3 H 8/16b 16/16b

6 (R)-25f CH3 p-F 32 32
7 (R)-25g CH3 p-CH3 >64 >64
8 (R)-25i CH3 p-Br 8/8b 8/8b

9 (rac)-25j CH3 p-CF3 32 32
10 (R)-25k CH3 o-F 64 >64
11 (Rac)-25l CH3 o-CH3 64 >64
12 (R)-25m CH3 m-F 16 16
449

450in
451tio
452na
453an
454th
455me
456if o
457at
458ito
459wh
460pi
461lin
462ty
463sit
464

465ag

13 (Rac)-25n CH3 m-CH3 32 32

CA
PC value to that of the methoxy derivative (R)-20p (Table 1, entry
.
Then we decided to evaluate the effect of the substitution pat-

rn in fragment B by varying R1 (hydrogen, methyl and ethyl)
d including mono ortho, meta or para R2-groups, while keeping
e phenolic unit in fragment A. The compounds tested and their
tencies towards Tetrahymena are compiled in Table 2.
The unsubstituted benzylamine derivative 25a and three fluoro

bstituted benzylamine derivatives, 25b-d, were all inactive in

14 (R)-25q Et H 32 32
15 (S)-25e CH3 H 8/16b 8/16b

16 (S)-25i CH3 Br 8 16

The MPC values were determined by averaging three parallel measurements.
Values given represent a second triplicate ground of testing.
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ease cite this article in press as: S.J. Kaspersen et al., Bioorg. Chem. (2012), http
e concentration range tested (Table 2, entries 1–4). However,
our satisfaction (R)-25e, PKI-166 [43], having a para-hydroxy-
enyl at C-6 and a 1-phenylethanamine substituent as C-4,
oved to be potent (MPC: 8–16 lg/mL Entry 5), indicating the
portance of a chiral centre. Keeping the chiral R1 group as

ethyl, and introducing rather conservative variations in the para
sition in terms of size and electronic properties, gave an
PC = 32 lg/mL for the fluoro derivative 25f, while the methyl
alogue 25g was inactive. By changing the para substituent to
omo, (R)-25i, a MPC value of 8 lg/mL was obtained. Compared
the activity of the fluoro containing compound 25f this indicates
at a combination of both increased size and polarisability might
beneficial for achieving good potency. Also, the racemic trifluo-

methyl derivative (rac)-25j showed activity (MPC = 32 lg/mL).
tho and meta substitution by fluoro or a methyl substituent low-
ed the toxicity, but the meta-fluoro derivative 25m showed
preciable protozoacidal activity (MPC: 16 lg/mL, entry 13). It
s further investigated how the potency was affected by extend-

g the chain length of R1, but the result for 25q containing a 1-
enylpropanamine substituent at C-4 (MPC = 32 lg/mL, entry
) did not encourage further evaluation. To verify the importance
stereochemistry for the toxicity profile of these compounds we
o synthesised and analysed for the effect of the (S)-enantiomers
the 1-phenylethanamine containing 25e and its para-bromo

bstituted derivative 25i. Both were found to be highly potent
able 2, entries 15–16).
Some of the compounds evaluated in this study are efficient

hibitors of EGFR-TK in vitro [37]. These kinases depends on activa-
n from the epidermal growth factor (EGF), which is a known sig-
lling polypeptide in Tetrahymena [44]. However, we did not find
y correlation between the in vitro activity towards EGFR-TK and
e MPC values. This might indicate that receptors found in Tetrahy-
na are structurally different to the human version. To investigate
ther kinases might be the target, the para-hydroxyphenyl deriv-

ive 25e was evaluated against a panel of 124 kinases. Low inhib-
ry potency was observed in most cases (data not shown). Kinases
ich were inhibited to a degree of 25% or more at 50 nM are com-

led in Fig. 2. Of these kinases, protein kinase B [45–47], calmodu-
dependant enzymes [48,49], protein kinase C [9,50], and ERK1

pe proteins [51] are found in protozoa and represent possible
es of action for the pyrrolopyrimidines.
The toxicity/potency of the compounds presented in this study

ainst Tetrahymena crucially depended on the presence of a para

MK1

MIN
K1

VEGFR
YES1

PKBb
C alpha; JNK2: c-Jun N-terminal kinase/mitogen-activated protein kinase, TrkA:
Ke: inhibitory jB kinase, MAPKAP-K3, MAPK-activated protein kinase 3; CAMK

ial growth factor receptor, Yes 1: Yamaguchi sarcoma viral oncogene homologue.
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466 phenolic group in fragment A. This might be due to better solubil-
467 ity and bioavailability than for 20–24, or that the hydroxyl function
468 engages in critical bonding interaction. In Tetrahymena pyriformis
469 there is evidence for a transmembrane efflux pump as a detoxifica-
470 tion mechanism, preferably excluding lipophilic compounds [52].
471 This might be an alternative explanation for the observed toxicity
472 differences seen on introduction of the 4-hydroxyl group in frag-
473 ment A. As Tetrahymena has only limited CYP-450 dependent
474 metabolism activity [53], it is less likely that the toxicity is due
475 to oxidation of the para-hydroxyphenyl unit of 25 leading to aro-
476 matic 1,2-dienones, which are typical Michael acceptors in reac-
477 tion with bio macromolecules [16,18]. The low level of CYP-450
478 enzymes should also exclude the possible formation of active com-
479 pounds from putative precursors such as the C-6 phenyl substi-
480 tuted derivative 21. Furthermore, the MPC values were affected
481 by the substitution pattern and the presence of a chiral centre in
482 fragment B. All the above indicates that there is a specific mode
483 of action involving a defined 3-dimentional receptor target. How-
484 ever, the fact that both enantiomers showed toxicity is suggesting
485 that the pyrrolopyrimidines could have multiple modes of action,
486 or that the target is rather flexible.
487 As a model for unspecific toxicity the study shows that intro-
488 duction of a 4-hydroxyl group in fragment A could be problematic
489 for EGFR-TK inhibitors, but also that the toxicity profile could be
490 modulated by the substitution pattern both in fragment A and B.
491 Human toxicity issues have in fact been seen for 25e [54].

492 4. Conclusion

493 A series of pyrrolopyrimidines have been tested for their proto-
494 zoacidal activity against Tetrahymena. Five compounds were found
495 to be highly active (MPC 8–16 lg/mL). The identified compounds
496 do not contain the typical groups which trigger non-specific toxic-
497 ity effects. The presence of a para phenolic group in position 6
498 (fragment A), and a chiral centre in the 4-benzylamine (fragment
499 B) enhanced the potency considerably. Ortho-substitution in frag-
500 ment B, and an electron donating methyl group in the para position
501 reduced the toxicity. There is no evidence that EGFR-TK kinases are
502 targets for these compounds in Tetrahymena, however, kinase pro-
503 filing identified other potential sites of action. The detailed mech-
504 anism will be investigated in continuing work. The presented
505 structure–activity relationships could be used as guidelines for tar-
506 geting other, medically more important protozoa.
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