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1 Introduction

A goal of this short note is to explain how linear optimization, also called
linear programming (LP), may be used to solve two basic problems in math-
ematical finance concerning arbitrage and dominant trading strategies, re-
spectively. The note is an extension of a previous version [1] where we want
to make the presentation self-contained, with complete proofs of the duality
theorem of linear optimization.

We focus on the discrete one-step model in mathematical finance. What
we obtain are new proofs based on LP duality, and an efficient computational
approach for these problems. The idea here is to start with some “natural”
LP problems describing the investors problem. This note supplements the
presentation in [3]. (The proofs in [3], see (1.9) and (1.16), are related, but
different.)

However, as many students of mathematical finance are not familiar with
LP, a brief introduction to this topic is in order. In particular, a proof
of the important linear programming duality theorem will be given. Our
proof is based on convex analysis, in particular the separating hyperplane
theorem and Farkas’ lemma. For an introduction to linear optimization,
including efficient algorithms, we recommend [4] (here a constructive proof
of the duality theorem based on the simplex algorithm is given).

We treat vectors as column vectors and O denotes the zero vector (or
matrix).
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2 A preparation: distances and convex sets

We start with some preparations concerning nearest points of sets.
Recall from the course MAT1110 that a set S ⊆ R

n is closed if it contains
the limit point of each convergent sequence of points in S. For a nonempty,
closed set S ⊆ R

n and a point z ∈ R
n we define dS(z) = inf{‖s− z‖ : s ∈ S}

and call this the distance of x to S. We here use the Euclidean norm. We
say that s0 ∈ S is a nearest point of S to z if ‖s0 − z‖ = dS(z). One
can show that a nearest point always exists. In fact, dS(z) = dS′(z) where
S ′ = {s ∈ S : ‖s − z‖ ≤ dS + 1} and the minimum distance from z to S ′ is
attained as S ′ is closed and bounded (i.e., compact) and the Euclidean norm
is continuous; recall here the extreme value theorem.

Thus, closedness of (a nonmpty set) S assures that a nearest point of a
given point exists. But such a point may not be unique. However, for a VERY
interesting class of sets there is a unique nearest point! A set C ⊆ R

n is called
convex if λx+(1−λ)y ∈ C for all x, y ∈ C and λ ∈ [0, 1]. Geometrically, this
property means that whenever we choose two points in the set, say x, y ∈ C,
then all points on the line segment between x and y also lie in C.

Lemma 1 (Unique nearest point for convex sets) Let C ⊆ R
n be a

non-empty closed convex set. Then, for every z ∈ R
n, there is a unique

nearest point c to z in C

Proof. Assume that both c0 and c1 are nearest points to z in C, and let
d = dC(z) = ‖z − c0‖ = ‖z − c1‖. Then c0 and c1 both lie on the boundary
of the closed ball B = {y ∈ R

n : ‖y − z‖ ≤ d} with radius d and center z.
But the midpoint c∗ = (1/2)c0 + (1/2)c1 lies in C, as C is convex, and c∗

also lies in the interior of B. Therefore ‖c∗ − z‖ < d, a contradiction. This
proves that a nearest point must be unique.

3 The separating hyperplane theorem

A hyperplane is a ”generalized plane”. More formally, it is a set H ⊆ R
n

of the form H = {x ∈ R
n : aT x = α} for some nonzero vector a and a

real number α. The vector a is a normal vector of the hyperplane. In R
2, a

hyperplane is a line, in R
3 it is a plane. We denote Ha,α = H = {x ∈ R

n :
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aT x = α}. Also, we define the halfspaces

H−
a,α := {x ∈ R

n : aT x ≤ α};

H+
a,α := {x ∈ R

n : aT x ≥ α}.
(1)

These halfspaces represent the two sides of the hyperplane as we can convince
ourselves in R

2 or R
3.

Now, consider two sets S and T in R
n. We say that the hyperplane Ha,α

strongly separates S and T if there is an ǫ > 0 such that S ⊆ H−

a,α−ǫ and
T ⊆ H+

a,α+ǫ or vice versa. In R
2, this means that the sets S and T are on

separate sides of the line Ha,α, and neither of the sets intersect the line.

C

H hyperplane

z

Figure 1: Strong separation

Theorem 2 (Separating hyperplane theorem) Let C ⊆ R
n be a nonempty

closed convex set. Let z ∈ R
n and assume that z 6∈ C. Then C and z can be

strongly separated.

Proof. Consider C and z as indicated above, and let p be the unique
nearest point to x in C (see Lemma 1). Let x ∈ C and let 0 < λ < 1.
Since C is convex, (1 − λ)p + λx ∈ C and since p is a nearest point we
have that ‖(1 − λ)p + λx − z‖ ≥ ‖p − z‖, i.e., ‖(p − z) + λ(x − p)‖ ≥
‖p−z‖. By squaring both sides and calculating the inner products we obtain
‖p − z‖2 + 2λ(p − z)T (x − p) + λ2‖x − p‖2 ≥ ‖p − z‖2. We now subtract
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‖p − z‖2 on both sides, divide by λ, let λ → 0+ and finally multiply by −1.
This gives the inequality

(z − p)T (x − p) ≤ 0 for all x ∈ C. (2)

Consider the hyperplane H containing p and having normal vector a := z−p,
i.e., H = {x ∈ R

n : aT x = α} where α = aT p. The inequality (2) shows that
C ⊆ H−

a,α. Moreover, z 6∈ H−
a,α as z 6= p (because z 6∈ C). Now, consider the

hyperplane H∗ which is parallel to H (i.e., having the same normal vector)
and contains the point (1/2)(z + p). Then it is easy to see that H∗ strongly
separates z and C as desired.

An illustration is in Figure 1. There are several separation theorems for
convex sets, see e.g. [2] and the references given there.

4 Farkas’ lemma

Using the separating hyperplane theorem (Theorem 2) we will prove Farkas’
lemma which characterizes when a system of linear inequalities has a solution.
It is central in optimization, as we shall see in the next section.

Theorem 3 (Farkas’ lemma) Let A be a real m×n matrix and let b ∈ R
m.

Then there exists an x ≥ O satisfying Ax = b if and only if for each y ∈ R
m

with yT A ≥ O it also holds that yT b ≥ 0.

Proof. Let a1, a2, . . . , an denote the column vectors of the matrix A. Con-
sider the set C = {

∑n

j=1
λja

j : λj ≥ 0 for j = 1, . . . , n} ⊆ R
m; this set is

called the convex cone generated by a1, a2, . . . , an, see [2]. Then C is closed
(this can be checked from the definition of C, but is also follows from Propo-
sition 2.5.5 in [2]). We observe that Ax = b has a nonnegative solution x if
and only if b ∈ C.

Assume now that x satisfies Ax = b and x ≥ O. If yT A ≥ O, then
yT b = yT (Ax) = (yT A)x ≥ 0 as the inner product of two nonnegative vectors.
Conversely, if Ax = b has no nonnegative solution, then b 6∈ C. But then,
by the separating hyperplane theorem (Theorem 2), C and b can be strongly
separated, so there is a nonzero vector y ∈ R

n and α ∈ R with yTx ≥ α
for each x ∈ C and yT b < α. As O ∈ C, we have α ≤ 0. We claim that
yTx ≥ 0 for each x ∈ C: for if yT x < 0 for some x ∈ C, there would be a
point λx ∈ C with λ > 0 such that yT (λx) < α, a contradiction. Therefore
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(as aj ∈ C) yTaj ≥ 0 so yT A ≥ O. Since yT b < 0 we have proved the other
direction of Farkas’ lemma.

Farkas’ lemma can be understood geometrically: b lies in the cone C
defined in the proof above if and only if there is no hyperplane H = {x ∈
R

n : yTx = 0} (having normal vector y) that separates b and C, i.e., yT b < 0
and yT aj ≥ 0 for each j.

5 Linear programming duality

Linear programming (LP), or linear optimization, is to maximize a linear
function in n variables subject to a finite number of linear constraints. These
constraints are linear equations and/or linear inequalities. A recommended
book in LP is [4]. Hence, a standard linear programming problem is of the
form

sup{cT x : Ax ≤ b} (3)

where c ∈ R
n, b ∈ R

m and the m × n matrix A are given, and the variable
vector is x ∈ R

n. Here, ≤ means componentwise inequality (i.e., it holds for
each component).

We call problem (3) the primal problem. The primal problem is feasible
if there is an x satisfying Ax ≤ b, and such an x is called a feasible solution.
A feasible solution x0 is optimal if cT x0 = sup{cT x : Ax ≤ b}, so then the
supremum is attained and we may write max in stead of sup. We define the
supremum in (3) to be −∞ if the problem is not feasible, and it is +∞ if
the problem is unbounded, meaning that there is a sequence (xk) of feasible
solutions such that cT xk → ∞ as k → ∞.

Associated to each (primal) LP problem there is another LP problem,
called its dual problem. The dual problem associated with problem (3) is

inf{bT y : AT y = c, y ≥ O}. (4)

As for the primal problem we use the terms feasible problem, feasible solution
and optimal solution for the dual problem. We define the infimum in (4) to
be ∞ if the problem is not feasible, and it is −∞ if the problem is unbounded,
i.e., there is a sequence (yk) of feasible solutions such that bT yk → −∞ as
k → ∞.

One of the main theorems in optimization is the LP duality theorem (see
[2], [4]).
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Theorem 4 (Linear programming duality theorem) (i) Assume that
the primal problem (3) has an optimal solution. Then the dual problem (4)
also has an optimal solution and

max{cT x : Ax ≤ b} = min{bT y : AT y = c, y ≥ O}. (5)

(ii) If one of the problems is unbounded, then the other problem is not feasible.
Thus, when at least one problem is feasible, sup{cT x : Ax ≤ b} = inf{bT y :
AT y = c, y ≥ O}.

Proof. (i) Let x be feasible in the primal problem and y feasible in the
dual problem, so Ax ≤ b and AT y = c, y ≥ O. Then

cT x = (AT y)Tx = yTAx ≤ yT b = bT y

where the inequality follows from Ax ≤ b as y ≥ O. By first taking the supre-
mum over feasible x and then the infimum over feasible y in this inequality
we obtain

(∗) sup{cT x : Ax ≤ b} ≤ inf{bT y : AT y = c, y ≥ O}.

Let x0 be an optimal solution of the primal problem. Let aT
i denote the

ith row in the matrix A (so ai is a column vector). Define I = {i ≤ m :
aT

i x0 = bi} which corresponds to the indices of inequalities from Ax ≤ b that
hold with equality for x = x0.

Claim: For each z ∈ R
n satisfying aT

i z ≤ 0 for all i ∈ I, the inequality
cT z ≤ 0 also holds.

Otherwise, there is a z ∈ R
n with aT

i z ≤ 0 for all i ∈ I and cT z > 0.
Then, for suitably small ǫ > 0, the point x′ = x0 + ǫz satisfies Ax′ ≤ b
because (i) for each i ∈ I we have aT

i x′ = aT
i x0 + ǫaT

i z = bi + ǫaT
i z ≤ bi , and

(ii) for each i ≤ m with i 6∈ I we have aT
i x′ = aT

i x0 + ǫaT
i z < bi + ǫaT

i z, so
aT

i x′ ≤ bi for ǫ small. But cT x′ = cT x0 + ǫcT z > cT x0 which contradicts that
x0 is an optimal solution. This proves the Claim.

Next, the Claim makes it possible to apply Farkas’ lemma (Theorem 3)
to the matrix A′ whose columns are the vectors ai for i ∈ I (so A′ plays the
role of A in Theorem 3). As a result there must exist nonnegative numbers
yi for i ∈ I such that

∑

i∈I yiai = c. Therefore AT y = c where y ∈ R
m is

the vector with components yi for i ∈ I (those we just found), and yi = 0
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otherwise. Since AT y = c and y ≥ O, y is a feasible solution in the dual
problem. Moreover, using that yi = 0 for i 6∈ I we get

cT x0 = yT Ax0 =
∑

i∈I

yi(a
T
i x0) =

∑

i∈I

yibi = bT y.

This proves, due to the inequality (∗), that y is an optimal solution of the dual
problem and that the maximum in the primal problem equals the minimum
in the dual problem, and (5) holds.

(ii) Consider the inequality (∗). If the primal problem is unbounded,
then the dual problem is not feasible (for, due to (∗), bT y would be an upper
bound on cT x). So, in this case, both sides of (∗) are ∞. Similarly, if the dual
problem is unbounded, both sides of (∗) are −∞. Finally, if the supremum
in (∗) is finite, one can show that the supremum is attained and therefore, by
the first part of the theorem, ”sup=max=min=inf”. The same is true when
the infimum is finite. (We omit the detailed argument here, it involves the
structure of polyhedra - the feasible sets of LP problems).

Thus, for an LP problem, there are only three possible situations: (i) it
is not feasible (i.e., no feasible solution exist), (ii) it is unbounded, or (iii) an
optimal solution exists; then both problems have an optimal solution, and
the corresponding optimal values are equal.

Note the special case where b = O (in our primal and dual problems):
then the function to be minimized in the dual is constant equal to 0. Thus,
the problem is simply to determine if there are any feasible solutions in the
dual. This special case will be useful later.

6 The fundamental theorem of asset pricing

via linear programming

In this section, we will apply LP theory in order to prove a version of the fun-
damental theorem of asset pricing and also to find dominant trading strate-
gies. See [3] for a discussion of these notions and mathematical finance.

We shall use the following notation:

• K: number of states (scenarios), n: number of assets

• P = [pij ]: payoff matrix of size K × n where pij is payoff under state i
for asset j (this is ∆S∗

j (ωi) in Pliska’s notation)
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• h ∈ R
n: a trading strategy, we buy hj units of asset j

• x ∈ R
K : the payoff, i.e., outcome of some trading strategy under dif-

ferent states

• O, e, I: the zero vector (or zero matrix) O, the all ones vector e and
the identity matrix I (of suitable size). We treat vectors as column
vectors.

• Nul(A), Col(A): nullspace and columnspace of a matrix A

A risk-neutral probability measure is a vector y with positive components
that sum to 1 such that the dot product of y and each column of P is zero
(meaning that expected payoff of each asset is zero).

The first LP model: find an arbitrage

Consider the LP problem

max
∑K

i=1
xi

subject to

x = Ph

x ≥ O

(6)

Here x = Ph relates payoff x and trading strategy h; the linear equation says
that x is a linear combination of the columns in P . The nonnegativity of x
is very desirable: we will not loose money under any state. The objective
(goal) is to maximize the sum of the payoffs, where we sum over all states.
It should be a reasonable goal and can (if you like) be given a probabilistic
interpretation. The main point is that it reflects that we look for positive
payoffs for at least one scenario, i.e., an arbitrage possibility.

So: an arbitrage exists if and only if the optimal value of the LP problem
(6) is positive. Since LP problems can be solved very fast using different
algorithms (e.g. the simplex algorithm), we can find an arbitrage, or prove
that it does not exist, efficiently, even if K and n are very large. For instance,
even with some thousands of assets and several hundreds of states it should
only take a couple of seconds to solve the problem assuming you have a good
LP code. Moreover, we may obtain an important theoretical result from this
LP viewpoint.
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Theorem 5 (The arbitrage theorem) There is no arbitrage if and only if
there is a risk-neutral probability measure.

Proof. We prove the arbitrage theorem by applying duality theory to our
LP above, and doing some matrix calculations for partitioned matrices.

The LP problem (6) may be written in the form of the primal problem
in (3) as follows:

max {

[

O
e

]T [

h
x

]

:





P −I
−P I

O −I





[

h
x

]

≤





O
O
O



}

Here we used that Ph = x is equivalent to Ph− x ≤ O, −Ph + x ≤ O. The
dual of this problem (confer (4)) is

min {





O
O
O





T 



y1

y2

y3



 :

[

P T −P T O
−I I −I

]





y1

y2

y3



 =

[

O
e

]

, y1, y2, y3 ≥ O}

Note that the objective function is simply 0! By using the substitution
y = y2 − y1, z = y3 the dual problem becomes

min {0 : P T y = O, y = z + e, z ≥ O}.

Check this! This problem has a feasible solution y if and only if there is
a vector y ∈ Nul(P T ) = Col(P )⊥ such that y ≥ e. This, again, must
be equivalent to the existence of an y ∈ Nul(P T ) with yi > 0 (i ≤ K) and
∑

i yi = 1; this follows by suitable scaling of y. Summing up, we have verified
that the following statements are equivalent:

• there is no arbitrage

• the optimal value in the LP problem (6) is zero

• there is a strictly positive vector y ∈ Nul(P T ) with
∑

i yi = 1; this is
precisely a risk-neutral probability measure.

So the proof is complete.

We now turn to the second theorem; it concerns dominant trading strate-
gies.
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The second LP model: find a dominant trading strategy

This problem is very similar to (6) but it contains an extra variable ǫ ∈ R:

max ǫ

subject to

x = Ph

x ≥ ǫe

(7)

The final constraints means that xj ≥ ǫ for each j ≤ n, and the goal is to
find a trading strategy which maximizes the minimum outcome (the optimal
ǫ)! Note that (7) has feasible solutions (e.g., the zero vector).

So: a dominant trading strategy exists if and only if the optimal value of
the LP problem (7) is positive.

Recall that a linear pricing measure is just like a risk-neutral probability
measure, except that some probabilities may be zero.

Theorem 6 (Dominant trading strategy/linear pricing measure) There is no
dominant dominant trading strategy if and only if there is a linear pricing
measure.

Proof. The proof is very similar to the previous one. First, we write the
LP problem (7) in the form of the primal problem in (∗):

max {





O
O
1





T 



h
x
ǫ



 :





P −I O
−P I O

O −I e









h
x
ǫ



 ≤





O
O
O



}

The dual of this problem is (see (∗) and do a calculation as before):

min{0 : P T (y1 − y2) = 0, −y1 + y2 − y3 = 0, eT y3 = 1, y1, y2, y3 ≥ O}.

With the substitution y = y2 − y1 and π = y3 we see that we can eliminate
y, and the problem simplifies to

min{0 : P Tπ = 0,
∑

j

πj = 1, π ≥ O}.

A feasible solution in this problem is precisely a linear pricing measure. This
proves that the following statements are equivalent:
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• there exists a linear pricing measure

• the optimal value in the LP problem (7) is zero

• there is no dominant trading strategy

That’s it!

Final comments:

1. Using LP problems (6) and (7) you may solve efficiently arbitrage and
dominant trading strategy problems. Note that any (good) LP solver
solves both the primal and the dual. So, e.g., if a linear pricing measure
exist, you will get it!

2. The LP approach above may be extended in different ways. For in-
stance, in (6), you may add the constraint h ≥ O (no short-selling),
and add an upper bound on the components of h, or further linear
constraints on the payoff vector x. Well, the problem then gets more
complex, but it is still an LP problem, and should be easy to solve
computationally.

3. Perhaps this motivates you to learn more about LP: take a look at the
course page for INF-MAT3370 Linear optimization
http://www.uio.no/studier/emner/matnat/ifi/INF-MAT3370/
There is also a Master course (INF-MAT5360) in optimization and
convexity (see [2]), both useful areas for mathematical finance.
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