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Abstract: The authors present a methodology to improve the rational modelling of non-uniform lines (NuLs). First, they
formulate a segmented chain matrix representation of the NuL, which is converted into a nodal admittance formulation with
respect to the two line ends. The admittance matrix is fitted with rational functions while utilising the so-called chain matrix in
combination with a mode revealing transformation matrix, to improve the identification of poorly observable modes and poles.
The procedure is demonstrated for a case of a very wide river crossing where the transmission towers are over 300 m high. The
results compare favourably with the ones obtained using a numerical Laplace transform.

1 Introduction
A large number of methods have been developed for transmission
line modelling (overhead lines and cables) with inclusion of
frequency-dependent and distributed parameter effects. Most of
this work has focused on modelling uniform lines [1–4], i.e. lines
where the electrical per-unit-length parameters can be assumed
constant along the line. The uniformity permits analytical solution
of the voltage/current relations along the line, which enables
efficient solution by the travelling wave method. There are
however several situations where the uniformity assumption is not
applicable, for instance in the case of river and fjord crossings
where the conductor height varies drastically along the span such
as the ones in the Amazon forest [5, 6]. These are usually referred
as non-uniform lines (NuLs), and there is in general no analytical
solution for the voltage along the line in the frequency domain.

One of the early approaches to solve NuLs was based on the use
of finite differences, which implies spatial discretisation along the
line [7]. Later, it was proposed to represent a NuL by a cascade of
uniform lines and then use the chain matrix, i.e. the matrix transfer
function of voltage and current from one segment end to the other,
to obtain an equivalent nodal admittance matrix [8]. More recently,
it was proposed to represent the line directly by a matrix transfer
function [9] with the time-domain responses obtained via
numerical integration [10]. However, it was found that spurious
oscillations might occur, e.g. see Fig. 11 in [10] or [11]. Thus, there
is still a need to accurately represent a NuL in a time-domain
simulation framework. Another possibility to obtain an
approximate analytical solution is to assume that both the series
impedance Z and shunt admittance Y have a known exponential
dependency as function of position x along the line, Z = Z(x), Y = 
Y(x). This procedure is commonly referred to as the exponential
line and it has been applied to lossless lines [12], lossy lines [13]
and frequency-dependent tower models [14, 15].

In this work, we proceed with the approach in [8], i.e. of
cascading segments of uniform lines into a NuL. Each segment is
represented by the line terminal admittance matrix, which is
converted into its equivalent chain matrix. The chain matrices are
combined into a single chain matrix, which is finally converted
back into the equivalent terminal admittance matrix with respect to
the ends of the total NuL. One difficulty encountered with the
approach is that the small admittance elements associated with
charging currents at low frequencies tend to be lost in the (large)
short-circuit currents. We therefore introduce a mode-revealing

transformation (MRT) [16] to make the small eigenvalues more
observable in the admittance matrix. In order to obtain a model
suitable for time-domain simulation, the transformed admittance
matrix is subjected to rational function model extraction using
vector fitting (VF) [17–19], followed by passivity removal by
perturbation [20]. Finally, the model is transformed back into the
physical domain using the inverse transformation. A river crossing,
where the span between towers is relatively small, is considered as
a test case to illustrate the approach. The same configuration was
used in [9, 10].

2 NuL modelling using chain matrix
2.1 Difficulties with explicit representation of segments

The electrical characteristics of a non-uniform transmission line are
governed by the relations

dV(s)
dx = − Z(x, s)I(s)

dI(s)
dx = − Y(x, s)V(s)

(1)

where both per unit length impedance, Z(x,s) and shunt admittance
Y(x,s) are functions of both frequency s = jω and the position x
along the line.

With the cascading approach, the line is divided into a number
of short lines where each line is assumed uniform. This allows
representing each line segment by the travelling wave method, also
known as method of characteristics. However, for time-domain
simulations the small travel times associated with the short line
lengths imply a very small time step, making the whole simulation
unnecessarily time consuming and demanding in memory from the
computational point of view. This is one of the reasons that a NuL
remains one of the main systems for the evaluation of transients
based on numerical Laplace transform (NLT). Similar difficulties
result with the application of finite-difference time-domain method.

2.2 Terminal admittance calculation using chain matrix

To overcome the difficulties related to the time step length, one
may instead use a lumped-parameter (delay-less) representation of
each line segment and combine all segments into a single element
using matrix manipulation. The procedure is implemented using
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nodal analysis where the nodal admittance matrix for the segments
is combined into a single matrix, followed by matrix reduction.

For situations with many segments, a much more efficient
approach is the use of the chain matrix representation of each
segment as one avoids the need for inverting a large (global)
admittance matrix. To illustrate the procedure, consider the
asymmetrical line span depicted in Fig. 1. Assume that this
particular line span, which is in fact a NuL given the height
variation the span, can be approximated by three uniform lines,
namely L1, L2 and L3 (as shown in Fig. 1). Further, assume that
each uniform line has an admittance matrix Yi

Yi =
Yi, 11 −Yi, 12

−Yi, 21 Yi, 22
(2)

with Yi, 11 = Yi, 22 and Yi, 12 = Yi, 21 can be defined in the phase
domain by [21]

Yi, 11 = Yc, i I + Hi
2 I − Hi

2 −1

Yi, 12 = 2Yc, iHi I − Hi
2 −1 (3)

where Yci
 is the characteristic admittance matrix and Hi is the

propagation function matrix for current of line segment Li, and I is
the identity matrix. The nodal admittance of each uniform line (2)
is converted into a matrix transfer function relating the voltage and
current vector between the two ends

vi + 1

ii + 1
= Qi ⋅

vi

ii
(4)

This transfer matrix, also known as the chain matrix [8], is
given below for the line segment Li

Qi =
Ai Bi

Ci Di
=

Yi, 21
−1 Yi, 22 Yi, 21

−1

−Yi, 12 + Yi, 11Yi, 12
−1 Yi, 22 Yi, 11Yi, 21

−1 (5)

Repeating the process for all line segments, we can obtain the
transfer matrix for the entire NuL from the matrix product

Qa = Q1 ⋅ Q2 ⋅ Q3 = A B
C D

(6)

From the transfer matrix in (6), it is possible to obtain an
equivalent nodal admittance matrix, Yeq, as shown below

Yeq = DB−1 C − DB−1A
−B−1 −B−1A

(7)

As the nodal admittance above is symmetric also for NuLs, only
three of the four block matrices need to be calculated since we
have

C − DB−1A = −B−1 T (8)

This procedure can even consider the effect of distributed source
along the NuL as shown in [22].

2.3 Modelling using rational functions

The equivalent nodal admittance matrix Yeq (9) can now be
calculated at a set of discrete frequencies (sk, Yeq(sk)) and fitted
with a stable and passive rational model on pole-residue form (9).
The resulting model can be included in EMT simulation programs
using an equivalent circuit or via recursive convolution [1]

Yeq(s) ≅ R0 + ∑
n = 1

N Rn
s − pn

(9)

3 Rational modelling using MRT
The extraction of the model (9) is made difficult by the fact that
Yeq has at low frequencies a combination of very large and very
small eigenvalues. To prevent the small eigenvalues to be lost in
the fitting process, we make use of the MRT introduced in [16].
MRT aims at improving the observability of this small eigenvalues
by choosing a suitable transformation matrix T that preserves the
physical properties of symmetry, realness, stability, causality and
passivity. It can be understood as an alternative to the modal VF
presented in [23, 24].

The procedure is as follows. First we calculate the eigenvalues
of Yeq and determine the frequency with the largest ratio between
the largest and smallest eigenvalue in Yeq. For instance, if λ(Yeq) is
the eigenvalue matrix of Yeq, we calculate κ(s0) as

κ(s0) = max
s

[ max (abs(λ(Yeq(s))))/ min (abs(λ(Yeq(s))))] (10)

Then, the eigenvector matrix T at s0 is rotated to minimise the
imaginary part in the least squares sense and approximated by
T0 = Re(T). The MRT matrix is then obtained from the nearest
orthogonal approximation of T0 using SVD, i.e.

T0 = U ⋅ Σ ⋅ VH and Q = U ⋅ VH (11)

using Q we obtain a modified nodal admittance matrix

Y = QT ⋅ Yeq ⋅ Q (12)

and this new matrix is subjected to the rational approximation thus

Y ≅ ∑
m = 1

Np Rm
s − am

+ R0 (13)

The model (13) is enforced to be passive by residue perturbation
[20]. Finally, the inverse transformation is applied to the rational
model to obtain the rational approximation of Y

Yeq ≅ ∑
m = 1

Np Q ⋅ R̄m ⋅ QT

s − am
+ Q ⋅ R̄0 ⋅ QT (14)

4 Example: simple river crossing
To illustrate this procedure, consider the case of a simple river case
described in [9, 10]. The line crosses a river by a 600 m span as
shown in Fig. 2 where the height of and the conductors varies
between 28 m on one side to 230.4 m on the other side. It is a
horizontal circuit with adjacent conductors 10 m apart. The phase
conductors have a 2.54 cm radius, and internal radius 0.3645 cm
and DC resistance is 6.1142·10−5 Ω/m. The ground wires are 3/8′
extra high strength (EHS). The water resistivity is assumed to be
10 Ω·m. 

To obtain the equivalent nodal admittance matrix of the 600 m
span, we adopt a length of 20 m for the homogeneous (uniform)
line sections. Given the significant height difference between these

Fig. 1  Schematic representation of an asymmetrical line span using a
cascade of uniform lines
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two towers we opt to use the catenary equation where the height of
a conductor along the span is given by

y = q cosh x
q − 1 (15)

where q is the ‘specific weight’ of the conductor [9]. Thus, phase
conductors present distinct sags when compared with ground wires.
The constant height of conductors to be used in each segment Qi is
obtained by the integration of (15), leading to

ȳ = q + q2 sinh x1/q − sinh x0/q
x1 − x0

(16)

where x1 and x0 are the x-coordinates that defines the length of the
uniform line approximation. After obtaining the chain matrix for

each segment, a simple multiplication allows to obtain the
equivalent transfer matrix for the whole system, which is then
converted to an equivalent nodal admittance matrix, as mentioned
in Section 2. It is important mentioning that both Z(s) and Y(s) are
calculated considering the same approach as in [25].

4.1 Direct fitting

A rational approximation of this configuration was presented in
[26] and for sake of clarity is summarised here. First, we must
obtain the characteristic admittance from each terminal of the NuL
at infinite frequency to force the representation to be
asymptotically correct, i.e.

YC(∞) = R0 =
ℜ Yc1

(∞) 0

0 ℜ Yc2
(∞)

(17)

where Yci
 is the characteristic admittance using the line segments

closest to each terminal, i.e. with Yc1
 as the characteristic

admittance of the line segment closest to terminal #1 and Yc2
 being

the one related to terminal #2. In practice, we choose a very high
frequency (e.g. 100 MHz) to obtain those values. Given the distinct
height of these line segments Yc1

≠ Yc2
. We subject the equivalent

nodal admittance Yeq to a rational approximation, Yfit, such as

Yeq − Yc(∞) = Yfit (18)

For the fitting, we assume the approximation to be strictly proper
and a total of 699 samples from 1 Hz up to 2 MHz are considered.
The samples are a combination of logarithmic and linear
distribution. For the rational model, we considered 50 poles using
inverse matrix norm as a weighting function. Twenty-three
passivity violations were found and they were corrected by the
procedure in [20].

Fig. 3a depicts the rational approximation of the equivalent
nodal admittance matrix. Although a very good match is attained,
the large ratio between eigenvalues caused a poor accuracy at the
lower frequencies. Fig. 3b depicts the eigenvalues of the equivalent
nodal admittance matrix and its rational approximation as a
function of frequency. The smallest eigenvalues are identified
correctly only above 10 kHz. 

4.2 Fitting using MRT

To apply the MRT to (18), we assume the rational approximation to
be strictly proper, i.e.

QT ⋅ Yeq − Yc(∞) ⋅ Q ≅ Ȳfit = ∑
n = 1

N R̄n
s − pn

(19)

For the passivity enforcement, we consider the following rational
approximation:

Yeq = QT ⋅ Yc(∞) ⋅ Q + ∑
n = 1

N R̄n
s − pn

(20)

To obtain a stable model using 50 poles it was necessary to use a
high number of inner-loop iterations in the routine RPdriver.m [27]
to remove the 18 passivity violations that were present in the
original model. The passivity enforcement via residue perturbation
was successful in obtaining a stable model; the results are depicted
in Fig. 4a. There are some noticeable differences when compared
with the direct fitting approach. It is observed that the fitting errors
are higher in the elements of Y (Fig. 4a versus Fig. 3a), although
the accuracy is acceptable over the full frequency range. On the
other hand, the small eigenvalues of Y are much more accurately
represented in the relative sense when modelling via MRT (Fig. 4b
vs. Fig. 3b). With MRT, the small eigenvalues are accurate down to

Fig. 2  Simple river crossing
 

Fig. 3  Rational model for the river crossing case (direct approach)
(a) Nodal admittance, (b) Eigenvalues
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about 100 Hz whereas the model by direct fitting gives large errors
below 1 kHz for the small eigenvalues. 

4.3 Time-domain simulation

The impact of the corrupted low-frequency eigenvalue can be
easily observed in an open-circuit response test. Consider the
circuit shown in Fig. 5 where a unit step voltage is applied at node
1 with all other terminals remaining open. For comparison, we also
analyse the same configuration using the NLT [28–30]. It is
important mentioning that the NLT response can be considered an
accurate result since it is the time response of the modelled system
without any rational approximation. The time-domain responses
were obtained using an EMTP-like simulation built in MATLAB
using recursive convolutions for the realisation of the rational
model [31, 32]. The results for node 4 are shown in Fig. 6. A very
good match is obtained between all the approaches. 

For the induced voltages, the scenario is rather different.
Figs. 7a and b depict the voltages at node 5, while Figs. 7c and d at
note 6. For the initial time, all the approaches provided similar
results. However, the direct approach starts to deviate from the
NLT results as time increases. This behaviour is not found when
the rational model is obtained using the MRT. 

We next replace the voltage excitation in Fig. 7 with a unit step
current excitation. Figs. 8 and 9 show, respectively, the voltage at
the node 4, and the voltage at nodes 5 and 6. It is observed that in
this case, the direct method gives substantial errors also in node 4,
in addition to the induced voltages (nodes 5 and 6). The reason for
the error in the node 4 voltage is mainly the inability of the direct
approach to represent the line-to-earth capacitances associated with
the small eigenvalues. For the equivalent rational modelling
considering the MRT, such erroneous behaviour is not observed. 

5 Discussion
NuL modelling remains a challenge for time-domain simulation
with the typical approach of cascading small line segments
modelled by travelling wave-type models (modal domain or phase
domain). The main difficulty is that the travelling wave method
requires the time step length Δt to be smaller than the line travel
time τ on the considered segment, in practice no more than one-
fifth of τ. For the 600 m river crossing example, we used a spatial
discretisation of 20 m which amounts to a travel time of τ = 67 ns
with a propagation speed 300 m/µs. A travelling wave model
representation would therefore dictate a time step length not
exceeding Δt = τ/5 = 13.4 ns. The use of such small time step length
in an EMTP-type simulation would easily result in excessive run
times and memory requirements. In contrast, the usage of the
presented rational model allowed us to simulate both cases using a
time step of 400 ns. Even larger time steps can be used if one is not
interested in high-frequency transients.

The direct fitting approach with inverse magnitude as weighting
function cannot accurately capture the behaviour of small
eigenvalues at lower frequencies as they are only weakly
observable in the admittance matrix elements. The case of the
simple river crossing illustrated well this behaviour. Despite the

Fig. 4  Rational model for the river crossing case using MRT
(a) Nodal admittance, (b) Eigenvalues

 

Fig. 5  Scheme for the step response test (simple river crossing)
 

Fig. 6  Voltage at node 4 considering the direct fitting, MRT and NLT approaches for the simple river crossing
(a) From 0 s to 50 µs, (b) From 50 to 150 µs
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highly accurate fitting, there was a substantial loss of accuracy in
the model's representation of the small eigenvalues.

The limitations associated with the direct fitting were overcome
by the usage of MRT. One issue related to the use of MRT is to
avoid fitting elements that are numerically close to zero, i.e. below
10−15 or less. This is achieved by limiting the value of the (inverse)

weighting function when solving the associated least squares
problem as reported in [16].

The models (direct fitting and MRT) presented some small
oscillations associated with the Gibbs oscillations due to the finite
upper frequency limit in the rational fitting, barely observable in
Fig. 8. It is important to note that the spurious oscillations
associated with the time-domain modelling of a NuL as shown in
[8] are of a different nature and do not arise with the rational
modelling approach proposed here.

For the test case considered here, the MRT resulted in a model
that provided faster passivity enforcement, i.e. it required a lesser
number of interactions to be stable. Further research is needed to
evaluate whether this was a particular behaviour for the case
considered here or it comes from the higher accuracy that the MRT
can provide.

6 Conclusions
A new approach has been presented for modelling NuLs which
offers a combination of high accuracy and high efficiency in time-
domain simulations. The method is based on efficient calculation
of the terminal admittance matrix in the frequency domain by
cascading line sections using the chain matrix approach. The
problem of error magnification caused by small eigenvalues of the
admittance matrix is overcome by the usage of a MRT prior to
fitting with rational functions and subsequent passivity
enforcement.

Application to a river crossing highlighted the accuracy
advantages of using MRT in the fitting process. It was shown that
MRT is able to mitigate the loss of accuracy of the small
eigenvalues, which was shown to lead to large error magnifications
in time-domain simulations with some terminal conditions.

Compared with a traditional modelling approach of cascading
travelling wave models, the proposed method offers higher
computational efficiency by permitting the use of a larger time step
length.
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